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Abstract 

Three-dimensional (3D) shapes differ from two-dimensional (2D) shapes in terms of the amount of data that cat 

be acquired for each shape. In addition, the information that can be obtained from a 3D shape varies greatly de-

pending on the viewing angle and posture, and there is currently no universal countermeasure for this problem. 

Therefore, it is difficult to acquire the level of features necessary for machine learning. To learn and recognize 3D 

shapes, learning approaches using images from various angles, techniques using normal vectors, and approaches 

based on the acquisition of the overall structure via voxelization have been studied thus far. However, these meth-

ods are not always effective because they complicate the preprocessing of data required for learning. In this paper, 

the author proposes a method using solid angles as a new quantitative feature for learning and recognition. The 

solid angle is a 3D angle corresponding to the plane angle of a 2D shape; when a point is fixed, a constant value 

can be obtained regardless of the posture of the object. In addition, although the calculations required to obtain this 

value are intensive and time consuming, they can be performed in a relatively simple manner. In this study, prim-

itive shapes are learned and recognized using solid angles as a quantitative feature. As a result, the author demon-

strates that after learning using a neural network, this method can appropriately recognize a given shape. 

Keywords: Neural networks, Shape recognition, Shape registration, Solid angle. 

 

1. Introduction 

Unlike two-dimensional (2D) shapes, three-di-

mensional (3D) shapes inevitably have a substantial 

amount of characteristic data. Moreover, because one 

must perform appropriate processes for each encounter 

depending on the rotation of the object and the viewing 

angle, complicated processing is required, unlike that 

required for a 2D shape. Therefore, machine learning 

tends to be difficult for 3D shapes, in constant to 2D 

shapes (AI-SCHOLAR, 2018; Cohen et al., 2018; Fang 

et al., 2015; Mescheder et al., 2018). 

In general, methods for learning and recognizing 

3D shapes include learning approaches using images 

from various angles, techniques using normal vectors, 

and approaches based on reducing the amount of data 

via voxelization (Ahmed et al., 2019; Mescheder et al., 

2018). However, there is no universal solution, and the 

amount of memory used and the complexity of prepro-

cessing tend to make this process difficult (Wu et al., 

2015). 

In this study, the author demonstrates that accurate 

shape recognition can be achieved via learning based 

on neural networks using the solid angle as a quantita-

tive feature for primitive shapes. In general, because 

one can express complex 3D shapes by performing 

Boolean operations on primitive shapes, constructive 

solid geometry representations (CSG) are widely used 

in the field of computer graphics (CG) and computer-

aided design (CAD) (Fang, 2019). Therefore, a method 

for correctly learning and recognizing primitive shapes 

is required. By developing this research, it appears to 

be able to be utilized in methods such as CSG model-

ing to create complex shapes from primitive shapes 

(CORE CONCEPT TECHNOLOGIES INC., 2020; 

Hachiuma et al., 2017). Therefore, the application of 

this method may be effective in engineering fields that 

process geometry. 
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2. Related works 

2.1. Solid angles 

A solid angle, ω, comprising all the lines from a 

closed curve meeting at a vertex, is defined by the sur-

face area of a sphere subtended by the lines and radius 

of that sphere, as shown in Fig. 1. The dimensionless 

unit of a solid angle is the steradian, with 4π steradians 

in a full sphere (Fig. 1). A Solid angle is the 3D equiva-

lent of a 2D angle (Arecchi et al, 2007). 

 

 

Fig. 1. Definition of a solid angle (Arecchi et al, 2007). 

Because the surface area of a sphere is 4π, one can 

determine whether an arbitrary point belongs to the in-

terior of a 3D figure using the solid angle (Fig. 2) 

(Arecchi et al, 2007; Kodama, 2018). 

 

Fig. 2. Determining whether a point is within or outside a poly-

gon based on the solid angle (Kodama, 2018). 

Here, the curved surface S can distinguish be-

tween the front and the back. When point O is behind 

S, the point becomes +P; conversely, when point O is 

in front of S, the point becomes -P (Fig. 3) (Feng, 

2019; Kodama, 2018; Kodama, 2019).  

 

 

Fig. 3. Determining the obverse and reverse of a polygon (Ko-

dama, 2018). 

In a 3D shape, the input order of polygons is not 

uniquely determined (Research Institute for Computa-

tional Science, 2019), in contrast to a 2D shape; thus, 

the input can vary (Fig. 4). 

 

 
Fig. 4. Input order of data in different dimensions.
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This polygon method is widely used in CG, 

games, and movies because it can be easily and realisti-

cally expressed by pasting a texture on the surface. 

This method is also widely used in general software 

(Kato et al., 2019). 

When a solid angle is used, one can accurately 

perform calculations even for complicated 3D shapes 

such as nonconvex shapes; however, as a disadvantage, 

the calculations are highly time-consuming due to the 

use of trigonometric functions (Kawakatsu et al, 1993; 

Nakayama et al, 1994). Therefore, when analyzing a 

complex shape using a solid angle, a specialized device 

may be needed, such as a General-Purpose computing 

on Graphics Processing Units (GPGPU), depending on 

the size of the object and the analysis range (Kodama, 

2018). However, even if the object rotates, the solid an-

gle of the set arbitrary point does not change. There-

fore, a single value is obtained regardless of the posture 

of the object (Fig. 5). 

 

Fig. 5. The solid angle remains constant, even if the posture 

changes. 

2.2 Learning and recognizing 3D shapes 

2.2.1 Voxel-based solution 

A voxel is an element of volume representing the 

value of a normal lattice unit in 3D space. Voxels are 

an extension of data pixels in 2D images and are often 

used for visualizing and analyzing medical and scien-

tific data. Although voxelization has been used for a 

long time, its role has increased in recent years due to 

the continuous development of CPU and graphics hard-

ware (Mileff and Dudra, 2019). Voxelization is fre-

quently used because of its simplicity and ease in pro-

cessing. 

Using this method in combination with deep 

learning, a previous study proposed a technique for 

voxelizing a volume to 30×30×30 voxels (Fig. 6) (Wu 

et al., 2015). In addition, for 3D objects, various shapes 

can be used depending on the viewpoint. Researchers 

are seeking to improve identification systems by multi-

tasking the learning process for object category identi-

fication and posture identification for rotation (Seda-

ghat et al., 2017). 

Unfortunately, as the accuracy of a display de-

pends on the size of each voxel or grid cell, the resolu-

tion is low and it is difficult to improve the recognition 

accuracy in voxelization methods (Le and Duan, 2018). 

If the voxels are small, a more detailed representation 

can be obtained; however, the memory increases in 

proportion to the third power, presenting a significant 

disadvantage (Shi et al., 2020). 

 
Fig. 6. Learning method based on voxelization (Wu et al., 2015). 
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2.2.2 Multiview solution 

The multiview solution provides a method for ob-

ject recognition and learning wherein 3D shapes are 

predicated based on 2D images obtained from various 

angle. Previous studies using this method have shown 

that the used data increase the categorical recognition 

accuracy by 8% compared with voxel-based methods 

(Su et al., 2015). 

In the multiview solution, a large number of vir-

tual cameras facing the center of gravity are arranged 

around the axis to create a number of 2D images and 

3D shapes are compared based on these images. Subse-

quently, images obtained using numerous cameras 

around the axis are individually inputted to a convolu-

tional neural network (CNN), and the obtained feature 

map is integrated using a pooling layer (view-pooling) 

to obtain invariance with respect to rotation around the 

axis (Fig. 7) (Kanezaki et al, 2018; Su et al., 2015). In 

recent studies, attention fusion has been conducted 

based on multiview images and point clouds to im-

prove accuracy (You et al., 2018). 

 

 

 

Fig. 7. Learning method based on the multiview solution (Su et al., 2015). 

2.2.3 Spin-image solution 

Johnson and Hebert generated a spin image by 

moving surrounding vertices on a cylindrical surface 

centered on the normal vector of a vertex (Johnson, 

1997; Johnson and Hebert, 1999). They proposed a 

method of correspondence based on a search for simi-

lar images using the spin image compressed via pri-

mary component analysis (Fig. 8). 

 Currently, researchers are seeking to collate an 

input distance image by projecting the positional rela-

tionship with respect to peripheral points in 2D based 

on the normal vector at the target point of the model 

and acquiring features that do not depend on the pos-

ture (Deng et al, 2018). 

 

Fig. 8. Acquisition of features based on spin images (Johnson, 1997). 
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2.2.4 Learning and recognition through 

deep learning 

For learning and recognition, deep learning meth-

ods have been studied based on quantitative features ob-

tained using the voxel-based solution, multiview solu-

tion, and spin-image solution, as previously presented 

(Ahmed et al., 2019; Lui et al., 2019; Varma et al., 2020). 

However, unlike 2D shapes, 3D shapes must be ob-

served from various directions, and one must determine 

whether the object remains the same when rotated (AI-

SCHOLAR, 2018). In addition, the range of notable 

shapes may be broad, or a detailed range may be re-

quired. Therefore, it is difficult to apply methods based 

on CNNs (Fig. 9) (Fang et al., 2015; Jurafsky and Martin, 

2020). 

 

 

Fig. 9. Learning method for 3D figures based on deep learning (Fang et al., 2015). 

2.3 Neural network 

A neural network is a combination of artificial 

neuros, i.e., computational elements that model nerve 

cells. Figure 10 shows the composition of a single arti-

ficial neuron. The artificial neuron receives multiple in-

put signals, performs appropriate calculations, and then 

provides an output signal. 

 

Fig. 10. Composition of an artificial neuron (Okada, 2016). 

For a multi-input/single-output nonlinear element, 

as shown in Fig. 10, the neuron receives a multidimen-

sional input 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) and outputs 𝑦.  

In general, the processing of Fig. 10 can be de-

scribed via Eq. (1). 

𝑦 = 𝑓 (∑(𝑤𝑖𝑥𝑖 − 𝜃)

𝑛

𝑖=1

) (Eq. 1) 

where 𝑥𝑖 is the 𝑖-th element of 𝑥 and 𝑤𝑖  is the 

coupling weight corresponding to the 𝑖-th input, a pa-

rameter that represents synaptic signaling. Further-

more, 𝜃 is a threshold value. Function 𝑓 is an activa-

tion function that is often expressed as a sigmoid func-

tion, such as that given in Eq. (2) (Jurafsky and Martin, 

2020).  

𝑓(𝑢) =
1

1 + 𝑒−𝑢
(Eq. 2) 

In general, learning is performed by constructing a 

network that combines numerous artificial neurons and 
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then connecting the outputs and inputs in order. For ex-

ample, a neural network that receives two input signals 

and provides one output signal can be built as shown in 

Fig. 11 (Odaka, 2016). For this type of structure, the 

configuration in which the signal propagates from input 

to output is called a feedforward network or a layered 

network (Odaka, 2016; Jurafsky and Martin, 2020). 

 

Fig. 11. Example of a feedforward network configuration 

(Okada, 2016). 

Researchers have applied hierarchical neural net-

works to various tasks such as character recognition, 

phonological recognition, and signal processing. It has 

been shown that tasks such as handwritten numeral 

recognition can achieve almost the same performance 

as that obtained by manual classification. For example, 

previous studies have shown that a network with a total 

of nine layers can be applied to raw data encountered 

in face recognition, image recognition, handwritten 

characters, and word vectors in documents and can ex-

tract the structure latent in the data as a feature (Oord et 

al., 2016; Hinton and Salakhutdinov, 2006; Kalchbren-

ner et al., 2016; Zhang et al, 2016). In addition, for suc-

cessful learning via neural networks with a large num-

ber of layers, researchers have developed a method for 

reducing the degree of freedom of coupling weights 

and facilitating learning by creating a task-specific cou-

pling structure in advance (Fukushima, 2013). This ap-

proach corresponds to CNN and is often used for image 

recognition. CNN is a very effective method, but on the 

other hand, it has been pointed out that it is difficult to 

apply directly to numerical data such as CSV files 

(Takahashi et al., 2018). 

For learning in multilayer networks, in principle, 

it has been proven that arbitrary input/output relation-

ships can be achieved if there is one intermediate layer 

with a sufficiently large number of neurons (Cybenko, 

1989; Funahashi, 1989). 

3. Proposed method 

In the proposed method, the author creates primi-

tive shapes for multiple 3D shapes and calculate each 

solid angle. Thereafter, machine learning is performed 

using a neural network based on the obtained solid angle. 

It should be noted that this research assumes a prelimi-

nary step to develop into a Deep Neural Network (DNN), 

and for this purpose, a layered neural network has been 

built and verified. In other words, the effectiveness is 

verified by the basic configuration as based on Figure 11. 

 

 

Fig. 12. Sorting of solid angles by magnitude (steradians). 

As mentioned earlier, the order in which data are 

entered is generally not uniquely determined for 3D 

shapes, in contrast to 2D shapes (Fig. 4). Therefore, the 

author creates triangular polygons, and the solid angles 

of each polygon are sorted according to their magnitude, 

followed by the learning process (Fig. 12). In addition, 
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in this research, the solid angle calculated for each trian-

gle polygon centered at an arbitrary single point was 

used. 

As an example, for the triangular pyramid shown in 

Fig. 13, the solid angle centered at the origin has four 

values, and a unique numerical sequence is obtained by 

applying the sorting method (Fig. 14). 

 

 

Fig. 13. Rotations of a triangular pyramid. 

  

Fig. 14. Example of sorting the obtained solid angles (steradians). 

 

Subsequently, the numerical sequence is learned 

by the neural network. The structure of the neural net-

work used for learning has 𝑛 inputs, single hidden 

layer with 𝑛 and one output (Fig. 15). Here, the num-

ber of inputs 𝑛 corresponds to the number of triangu-

lar polygons and 𝑥 is the value of the sorted solid an-

gle. In this configuration, a sigmoid function (Eq. 2) 

was used as an activation function, and the initial learn-

ing rate was set at 0.5. 

Verification data were created using the same 

method. 

 

 

Fig. 15. Structure of neural networks used in this experiment. 
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4. Experiments and evaluation 

The solid angles for cubes, rectangular shapes, 

cones, cylinders, and shapes were calculated for the 

learning process, which was implemented via neural 

networks. The effectiveness of the solid angle learning 

method was verified by creating a shape for verifica-

tion and comparing this shape with the learning result. 

 As this study aimed to confirm the effectiveness 

of learning with solid angles as a feature, only the solid 

angle centered on the coordinate origin was used. The 

structure of the neural network used for learning 

changes the number of input 𝑛 according to the num-

ber of triangular polygons, as illustrated in Fig. 15. Fur-

thermore, the parameters of each cell were automati-

cally changed by entering training data. After that, it 

was judged whether the result of entering the test data 

was correct for the parameters obtained by the training 

data. As mentioned above, since this is an initial verifi-

cation of the feature, note that the experiment was con-

ducted with a focus on dividing the two primitive 

shapes that are often used for CSG trees. 

The specifications of the used equipment are 

shown in Table 1. No specialized devices were used in 

this experiment. 

Table 1. Specifications of the equipment used in this experiment. 

Specification Value 

OS Windows 10 Professional (1909) 

Compiler 
Visual C# Compiler version 

3.0.19.21801 (Visual Studio 2019) 

CPU Intel Core i7-8565U (1.8 GHz) 

Memory 16 GB (DDR3) 

 

4.1 Cube and rectangular shape (triangular 

polygons = 12) 

The solid angle was calculated for the cubes and 

rectangular shapes shown in Figs. 16 and 17, respec-

tively. Then, the solid angles of the obtained triangular 

polygons were rearranged in ascending order and used 

as learning data. In this case, because the solid angle 

was calculated from the coordinate origin, the solid an-

gles are the same for each cube (Fig. 16). 

 

 

Fig. 16. Cubes utilized for learning. 

 

 

Fig. 17. Rectangular shapes utilized for learning. 

For verification data, the 3D images shown in Fig. 

18 were used. The verification data were processed in 

the same manner as the learning data, and the author 

verified that the shapes were correctly identified. The 

recognition rates based on the learning results are 

shown in Table 2. 
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Fig. 18. Solid shapes for validation. 

Table 2. Recognition rates of 3D shapes for verification. 

3D shape Correct identification rates (%) 

(A) Cube 1 99.290124 

(B) Cube 2 99.290124 

(C) Cube 3 99.290124 

(D) Cube 4 99.290124 

(E) Rectangular shape 1 99.609371 

(F) Rectangular shape 2 99.187627 

(G) Rectangular shape 3 99.187628 

(H) Rectangular shape 4 99.187628 

 

4.2 Cone and rectangular shape (triangular 

polygons = 12) 

The solid angle was calculated for the cones and 

rectangular shapes shown in Figs. 19 and 20, respec-

tively. Then, the solid angles of the obtained triangular 

polygons were rearranged in ascending order and used 

as learning data. 

 

 

Fig. 19. Cones utilized for learning. 
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Fig. 20. Rectangular shapes utilized for learning. 

For verification data, the 3D images shown in Fig. 

21 were used. The verification data were processed in 

the same manner as the learning data, and the author 

verified that the shapes were correctly identified. The 

recognition rates based on the learning results are 

shown in Table 3. 

 

 

Fig. 21. Solid shapes for validation. 

Table 3. Recognition rates of 3D shapes for verification. 

3D shape Correct identification rates (%) 

(A) Cone 1 99.812166 

(B) Cone 2 99.900417 

(C) Cone 3 99.324063 

(D) Cone 4 99.885613 

(E) Rectangular shape 1 99.949864 

(F) Rectangular shape 2 98.970878 

(G) Rectangular shape 3 97.931441 

(H) Rectangular shape 4 99.792057 

4.3 Cone and cylinder (triangular polygons 

= 24) 

The solid angle was calculated for the cones and 

cylinders shown in Figs. 22 and 23, respectively. Then, 

the solid angles of the obtained triangular polygons 

were rearranged in ascending order and used as learn-

ing data. 
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Fig. 22. Cones utilized for learning. 

 

Fig. 23. Cylinders utilized for learning. 

For verification data, the 3D images shown in Fig. 

24 were used. The verification data were processed in 

the same manner as the learning data, and the author 

verified that the shapes were correctly identified. The 

recognition rates based on the learning results are 

shown in Table 4. 

 

 

Fig. 24. Solid shapes for validation. 

Table 4. Recognition rates of 3D shapes for verification. 

3D shape Correct identification rates (%) 

(A) Cone 1 98.864965 

(B) Cone 2 99.549863 

(C) Cone 3 99.995699 

(D) Cone 4 99.988801 

(E) Cylinder 1 99.925257 

(F) Cylinder 2 99.925258 

(G) Cylinder 3 98.021626 

(H) Cylinder 4 99.999792 

4.4 Cylinder and sphere shapes (triangular 

polygons = 40) 

The solid angle was calculated for the cylinders 

and spheres shown in Figs. 25 and 26, respectively. 

Then, the solid angles of the obtained triangular poly-

gons were rearranged in ascending order and used as 

learning data. 
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 For verification data, the 3D images shown is 

Fig. 27 were used. 

 

 

Fig. 25. Cylinders utilized for learning. 

 

Fig. 26. Spheres utilized for learning. 

The verification data were processed in the same 

manner as the learning data, and the author verified 

that the shapes were correctly identified. The recogni-

tion rates based on the learning results are shown in 

Table 5. 

 

 

Fig. 27. Solid shapes for validation.

Table 5. Recognition rates of 3D shapes for verification. 

3D shape Correct identification rates (%) 

(A) Cylinder 1 97.614127 

(B) Cylinder 2 99.739156 

(C) Cylinder 3 99.608418 

(D) Cylinder 4 98.213890 

(E) Sphere 1 98.472752 

(F) Sphere 2 99.986135 

(G) Sphere 3 99.999984 

(H) Sphere 4 98.472755 

5. Conclusion 

Using the solid angle as a quantitative feature of 

3D shapes, it was possible to identify a given shape 

with a high recognition rate. Therefore, learning based 
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on a neural network using a solid angle as a quantita-

tive feature is an effective means for recognizing 3D 

shapes. 

 In contrast to conventional methods, this method 

utilizes solid angles, and one can easily extract feature 

quantities without requiring a setup with virtual cam-

eras or positional relationships for each point, as is 

needed for conventional learning methods. In addition, 

although the operations for the solid angle are time-

consuming, the processing is relatively simple. 

6. Future work 

This study primarily focused on confirming the ef-

fectiveness of learning using solid angles; thus, primi-

tive 3D shapes were evaluated. Furthermore, because 

this learning employed a small-scale neural network, 

experiments were conducted on polygons with a rela-

tively small amount of data. Therefore, in this experi-

ment, it was possible to verify without using special 

devices, but when expanding it in the future, it is nec-

essary to consider the use of device such as GPGPU. 

 In general, complex 3D shapes require a large 

amount of data. In addition, as there are various meth-

ods for expressing 3D shapes, one must be able to rec-

ognize a figure using various data representations. 

 In the future, evaluations of more complex 

shapes will be required. As the amount of data grows 

with increasing complexity, further learning and evalu-

ation using deep learning or similar methods must be 

performed. In addition, it is necessary to consider its 

application to CNNs. Furthermore, the use of solid an-

gles is time-consuming for complex 3D shapes; there-

fore, the overall processing time should be assessed. 

 By advancing this research, it is thought that 

shape recognition from a point cloud will be possible 

by Light Detection and Ranging (LiDAR), Sound Nav-

igation and Ranging (SONAR) 3D mapping, etc., and 

its application in the industrial field is expected to ex-

pand. 
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