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Abstract 

Bayesian networks have recently been used for discovering an optimal learning structure in machine learn-

ing. Bayes networks can describe possible dependencies of explanatory variables. As a novel approach to study-

ing the structure of a Bayesian network, the authors present the Antlion Optimization Algorithm (ALO). In the 

algorithm; deletion, rewind, insertion, and change are utilized to produce ALO to reach the best hull solution. 

Essentially, the technique used in the ALO algorithm imitates the antlions’ behaviors while hunting. The sug-

gested approach is contrasted with simulated Annealing, Simulated Annealing Hybrid Bee, Greedy Search Hy-

brid Bee, optimization inspired by Pigeon, and greedy search using the BDe Score function. The researchers also 

studied the representation of the confusion matrix of these techniques using different reference data sets. The 

findings of the assessments reveal that the proposed algorithm works better than the other algorithms and has 

better consistency and score values. As shown by the experimental evaluations, the proposed method has a more 

reliable performance than other algorithms (including the production of excellent scores and accuracy values). 

Keywords:Bayesian Network, Metaheuristics, Antlion Optimization, Structure Learning, Hunting Search, Local 

& Global Search, Search and Score 

1. Introduction 

One of the simplified theoretical techniques for 

graphing the probabilistic framework of observed 

data in machine learning is Bayesian Networks (BN) 

(Junzhong, Wei, Liu, 2012). They can be defined 

and executed completely for purposes including; 

information design, inference, and argumentation 

(Fortier, Sheppard and Pillai, 2013). The structure of 

the Bayesian network is represented as a direct acy-

clic graph (DAG) which is designed based on two 

complementary parts; the structure and the parame-

ters of the network. The structure represents de-

pendencies between the variables and the parameters 

represent conditional probabilities. Discovering the 
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learning structure of a Bayesian network is difficult 

without a proper search approach. Learning the op-

timal structure of a Bayesian network (BN) using a 

dataset is NP-hard class (Junyi and Chen, 2014). A 

direct acyclic graph (DAG) is the configuration of 

the Bayesian network, which is constructed based on 

two complementary parts; the network structure and 

parameters. Dependencies between the variables are 

expressed by the configuration and the parameters 

represent conditional probabilities. Without a proper 

search strategy, solving the learning structure of a 

Bayesian network is challenging (Margarritis, 2003). 

To analyze the space of BN structures, the score and 

scan method is used to continuously approximate all 

alternative network structures before the valid metric 

value is obtained.  

Score-based processes focus on a network pre-

diction function, possible data, and aim for a 

framework that optimizes the score, which is the 

target (Fast, 2010). Two key models are used to ap-

ply the score function approach: The Bayesian score 

and the information-theoretical score. In methods 

such as; Log-likelihood (LL), Bayesian Information 

Criterion (BIC), Normalized Minimum Likelihood 

(NML), Akaike Information Criterion (AIC), Mini-

mum Description Length (MDL), and Mutual In-

formation Tests (MIT), the information-theoretical 

score used. In several various methods, the Bayesian 

score was done, such as; BD (Bayesian Dirichlet), 

BDe (Bayesian Dirichlet ('e' for probability equiva-

lence)), BDeu (Bayesian Dirichlet equivalent uni-

form ('u' for uniform joint distribution)), and K2 

(Cooper and Herskovits,1992).  

There are different search method approaches 

to simplify the issue of structure learning. These 

include the Ant Colony Algorithm for Optimization 

(Salama and Freitas, 2012), Particle Swarm Intelli-

gence (Cowie, Oteniya, Cles, 2007), Bee Colony(Li 

and Chen, 2014), Hybrid Algorithm ((He and Gao, 

2018)( Li, and Wang, 2017)( Kareem and Okur, 

2018)), Bacterial Foraging Optimization (Yang, 

Junzhong, Liu, Jinduo and Yin, 2016), Simulated 

Annealing Algorithm(Hesar, 2013),  Breeding 

Swarm Algorithm(Khanteymoori, Olyaee, Abbasza-

deh and Valian, 2018), Genetic Algo-

rithms(Larraiiaga, Poza, 1996), Pigeon Inspired Op-

timization(Kareem and Okur, 2019), Gene-Pool Op-

timal Mixing Evolutionary Algorithm (GOMEA) 

(Orphanou, Thierens, and Bosman, 2018), Elephant 

Swarm Water Search Algorithm (Kareem and Okur, 

2020), Falcon Optimization algorithm (Kareem and 

Okur, 2021), Binary Encoding Water Cycle(Wang 

and Liu, 2018), Tightening Bounds(Fan, Malone, 

2014), A* Search Algorithms(Malone, Wui, 2011), 

Scatter Search Documents(Patrick and Sahin, 2004), 

Quasi-Determinism Screening(Rahier, Marie, Girard, 

Forbes, 2019), Cuckoo Optimization Algo-

rithm(Askari and Ahsaee, 2018), and Minimum 

Spanning Tree Algorithm (Sencer, Oztemel, Taksin 

and Torkul, 2013). Antlion optimization is a differ-

ent case of metaheuristic methodology that can be 

applied in Bayesian networks for structure learning. 

As a novel approach to Bayesian network structure 

learning, this paper proposes and provides a com-

parative review of this process. ALO is applied in 

the different optimization problems like the parallel 

machine scheduling (Kilic and Yuzgec, 2019), gov-

erning loop of thermal generators (Gupta and Saxena, 

2016), Optimal Reactive Power Dispatch (ORPD) 

problem (Mei, Sulaiman, Zuriani, 2015), and opti-

mal route planning of unmanned aerial vehicles (Yao 

and Wang, 2017).  

Because there are hundreds of nodes involved 

in high-dimensional data sets, which are now boom-

ing across a wide range of areas, the accompanying 

Bayesian network structure is very complex. Dis-

covering the Bayesian network structure based on 

the data turns into an NP-hard problem. To acquire 

an ideal structure from complicated and 

high-dimensional data sets in a fair amount of time, 

one of the primary problems in Bayesian network 

research is to develop an effective structure learning 

approach that is both efficient and effective. For 

compared to an expert system based on empirical 

knowledge, the Bayesian network eliminates the 

uncertainty issue, which is particularly important 
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when handling complicated problems, making it 

both more effective and intuitive to use. 

Given that learning the network from data is 

generally considered to be an NP-hard optimization 

problem, it is necessary to find an efficient search 

algorithm; to this end, the heuristic algorithm, which 

has high search efficiency and is frequently used to 

find the best network structure in structure learning, 

has been developed. 

Implementation of the stochastic search algo-

rithm is straightforward, and the method's global 

search capability is enhanced. The global infor-

mation may be employed more thoroughly than with 

other conventional search techniques, and the de-

pendency on optimization function is less when 

compared to the other approaches. As a result, the 

network structure learned by the structure learning 

technique based on the stochastic search algorithm 

differs less from the actual structure and may con-

verge to a better structure more rapidly, as well as 

the quality of the convergence itself is improved. 

The ALO has three major advantages: it can find a 

near-optimum solution independent of the starting 

parameter values, it has a quick convergence rate, 

and it can handle both integer and discrete con-

straints simultaneously. 

The following is the layout of the remainder of 

this article. In Bayesian Networks, Part 2 discusses 

the principle of structure learning. A short introduc-

tion to the Antlion Optimization Algorithm is in-

cluded in Part 3. We describe in part 4, the technique 

in-depth and demonstrate the experimental outcomes. 

The findings are found in Section 5. 

2. Structure Learning of Bayesian Networks    

Two components can be used to express the 

Bayesian Network: (G, P). The first, G (V; E), is the 

DAG that covers the calculable group of vertices (or 

nodes), V, interconnected by labeled edges (or con-

nections), E. The second, P = {P (Xi Pa (Xi)))}, is a 

set of conditional probabilistic (CPD) distributions, 

entity to all Xi variables (chart vertices). In addition, 

Pa(Xi) represents the set of the node Xi parents in G 

(Cowie, Oteniya, Coles, 2007). A simple probabilis-

tic combination for a (G; P) network can be repre-

sented based on this model via:       

      (1) 

On the other hand, a score function relies on 

many parameters, including Bayesian methods, data, 

and entropy, the minimum duration of explanation 

(Campos, 2006). Bayesian network posterior likeli-

hood, according to Bayesian inference rules, can be 

expressed as: 

   (2) 

In (2), P(D) is a conditional probability speci-

fied by using P(D) normalizing constant as: 

    (3) 

It is presumed that P(D) is independent of the 

Bayesian network G configuration. P(G) 'is the pre-

ceding likelihood, and  represents the model 

parameter. As a result, the resulting distribution of 

the network configuration can be estimated as long 

as the marginal likelihood of all possible configura-

tions is determined (Zhang, Liu, 2008). Structure 

learning approaches use score-based strategies by 

comparing the structure's existing and previous 

scores. The final expression of the ranking is (Heck-

erman, Geiger, and Chickering, 1995): 

Score (G, D)=∑Score(Xi, Pa(Xi), D(Xi, pa(Xi)))    (4) 
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3. Antlion Optimization Algorithm  

Metaheuristics are algorithms motivated by na-

ture to find approximate solutions to certain compu-

tationally complicated problems of optimization. In 

metaheuristics, swarming activities of firefly-BATT 

(Gadekallu, and Khare, 2016), cuckoo (Gadekallu, 

and Khare, 2017), ant, pigeon, fish, bee, etc. were 

used, (Gandomi, Yang, Marand, and Alavi, 2013). 

Some of the metaheuristic methods' supporting 

properties include adaptability, homogeneity, illa-

tion-free resources, and local optima eschewal abil-

ity (Mirjalili, Mirjalili, Lewis, 2014).   

One of the newly proposed metaheuristic 

methods is Antlion Optimization (ALO) (Mirjalili, 

2015). This is a life-cycle-based search algorithm 

inspired by evolution. The ALO algorithm simulates 

the relation in the trap area between antlions (doo-

dlebugs) and ants. Ants are expected to walk blindly 

around the search area and antlions are often ready 

to hunt them and in time they become competent 

with traps. The ALO algorithm aims to model, the 

combat techniques used by antlions. The antlion's 

life cycle consists of two main levels: larvae and 

adults. Normally, antlion life can be rated for up to 

3-4 years, which is effectively spent at the larval 

stage. In the larval and developmental stages, they 

search for prey daily. Antlion primarily uses five 

steps to hunt prey, including; arbitrary movement of 

ants, creation of traps, trapping of ants, hunting of 

prey, and traps reconstruction (Nischal, Mehta, 

2015). In the ALO algorithm ants represent possible 

arbitrary solutions to a particular problem within the 

search field and antlion holes to pick up and eat ants 

in the ground. The ability to chase ants is coded and 

programmed according to the relationship between 

the ants and the antlion in the objective role. When 

describing optimization using the essence of the 

hunting abilities of antlions, there are impressive 

actions to consider. Inside the search field, the ran-

dom motion produced by ants in ALO concerns the 

locations of ants and antlion-generated holes in the 

dimensions. The measurements of the cone-shaped 

hole are proportional to every antlion’s health, i.e. 

the fitter antlions can create stronger holes and thus 

have a greater chance of capturing prey. The ants 

will pass into any antlion trap and adaptively de-

crease the size of their random motion as the antlion 

slides the ants towards the bottom of the pit. As a 

result, the eating antlions grow fitter than preys, use 

their position and restore the hole to maximize their 

chance of capturing other ants (Zawbaa, Emary, Parv, 

2015) (Yogarajan, Revathi, 2016). This approach, 

which is based on the deep neural network (DNN) 

model, is used to pick ideal hyperparameters while 

using the least amount of time. An additional ad-

vantage of the suggested model was that it required 

just 38.13 percent of the total training time. It was 

shown via testing that the suggested paradigm was 

more effective (Gadekallu, Bhattacharya, Praveen, 

Zada, et. al.2020).  ALO-SVR, a technique based 

on ant lion optimization algorithm and support vec-

tor regression, was developed to increase lithium 

battery SOH estimate accuracy. The Pearson correla-

tion coefficient is used to examine the association 

between features and SOH in this technique, which 

picks characteristics that are strongly connected with 

current, voltage, and temperature. The Ant Lion Op-

timization Algorithm is used to refine the SVR mod-

el's main parameters before a final estimate model is 

developed. The findings reveal that the ALO-SVR 

approach has greater estimate accuracy and stability 

than the current GA-SVR and GS-SVR on the 

NASA public data set, proving the practicality of the 

estimation method. This research proposes the im-

plementation of Multi-Objective Antlion Optimiza-

tion (MALO) on solving Flight Scheduling and Air-

craft Routing in the current pandemic conditions. 

The result showed an improvement in the estimated 

number of passengers and a decrease in the total cost. 

The result also revealed that MALO is capable of 

outperforming other well-known optimization algo-

rithms and converged faster in the large data group 

while able to work faster than Genetic Algorithm 

(GA) across all experiments, proving MALO to be a 
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more suitable method when dealing with large 

scheduling task (Awalivian, Raihan, Suyanto and 

Siti, 2021). Problems that the Ant Lion optimization 

method easily falls into the local optimum are the 

focus of this paper's discussion of dynamic random 

hill-climbing. By using hill-climbing mechanisms, 

an ant lion's jumping capacity is enhanced. By bal-

ancing exploration and development, a dynamic 

hill-climbing mechanism improves the algorithm's 

global search capabilities (GU, 2020). 

The following conditions are assumed for the opti-

mization process: 

▪ Ants walk in the search area utilizing 

several arbitrary routes. 

▪ Arbitrary walking is applied to every 

dimension of ants. 

▪ Walking at random is affected by antlion 

traps. 

▪ Antlions can create holes that fit their 

fitness (more powerful fitness, bigger hole). 

▪ The possibility of grabbing more ants in 

large holes is higher. 

▪ The fittest antlion will trap each ant in 

repetition. 

▪ To mimic sliding ants in the direction of 

the antlion, the subjective movement scale has 

been adaptively decreased. 

▪ When an ant grows fitter than antlion, it 

suggests that under the sand it is trapped and 

pulled by antlion. 

▪ The antlion remains near the last cap-

tured prey and creates a pit to maximize its 

chance of capturing another prey. 

▪ The mathematical model of ant is ex-

plained as follows, while exploring the region 

for food, ants walk at random (Kilic, Yuzgec, 

Karakuzu, 2019):  

 

X(i)= [0, cusum(2r(i1-1)), cusum(2r(i2-1)), ..., 

cusum(2r(iT-1))]                   (5) 

cusum denotes cumulative sum, T is the largest 

number of iterations, where X(i) is the random 

movement of ants at iteration I and r(j) is an arbi-

trary function represented as:            

r=          (6) 

in the interval [0, 1], where rand is a random 

integer. The locations of ants are modified at each 

iteration, depending on the mechanism of random 

motion. 

According to the upper and lower values, the 

spontaneous movement of ants should be normalized 

into the location in the real quest field. It is possible 

to determine the position of ants by using the fol-

lowing formula for each iteration. 

              (7) 

Where ai and bi are the minimum and maxi-

mum random motion values of ant and 

denote the minimum and maximum loca-

tion values of the antlion at the iteration of ith. 

 is standardized by the use of [0,1] 

 This shows the location of the 

selected antlion nearby. The ant walk is influenced 

by the antlion; the antlion hunts and drags it down to 

the pit as soon as the ant reaches the trap. 

This procedure's mathematical model can be in-

terpreted as follows (Kilic, Yuzgec, Karakuzu, 

2019):  

 

 = Ct+ Antliont,  = dt+ Antliont     (8)  

 ,                (9) 

The antlion is the antlion location for each 

chosen antlion at the tth iteration while dt and ct is the 

maximum and minimum for all variables relating to 
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the ith ant, and I is the unique constant ratio based on 

the iteration as seen in various scenarios: 

  (10) 

where T is denoted as the maximum iteration, 

and the current iteration is denoted as t. While cal-

culating the  from equation 7, ants walk 

nearby to antlion and elite antlion, picked by the 

roulette wheel principle, in the current population. 

Ants' new locations are measured by the following 

equation as follow: 

  (11)   =                  

     

where  is arbitrary movement nearby 

antlion picked by the roulette wheel in the t-iteration, 

and  is the arbitrary movement nearby the 

elite antlion in the t-iteration. The antlions are need-

ed to update their position to the last ant site to be 

caught to enhance the possibilities of catching new 

prey. It is described by the following equation: 

   if  f( ) > f( ) (12)

  where f( ) and f( ) de-

notes the fitness function of the current iteration of 

Antlion and Ant,  indicates the jth 

ant position specified at the tth iteration 

and  indicates the position of ith ant at tth 

iteration. 

The locations of ants are collected and stored in 

the matrix Mant which is utilized for the optimization 

problem. Similarly, the positions of antlions are 

stored in the matrix Mantlion, which is shown as fol-

low: 

 ,  

        (13) 

where the  denotes to the value of 

ith ant at jth iteration, and  denote to 

the value of ith antlion at jth iteration. n denotes the 

number of ants also antlions, d represents the num-

ber of variables (Kilic, Yuzgec, Karakuzu, 2019). 

The (F) is fitness function of the ants and antlions 

are determined and saved in the Fant and Fantlion ma-

trix as follow: 

 

(14) 

4. Learning Structure of Bayesian Network 

Based on ALO 

As a quest tool for the structural learning of 

Bayesian networks, the proposed method incorpo-
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rates the Antlion Optimization (ALO) technique. For 

the measurement of the Bayesian network structure, 

the BDe metric is used as a score function. The ALO 

algorithm is essentially an iterated process consist-

ing of a population of entities where a possible loca-

tion in a given space is encoded by any antlion. The 

search area is known to be the space. In nature, the 

ALO algorithm simulates the chase process of ant-

lions. By walking around a roundabout path and 

driving the sand with a wide jaw, antlion larvae gen-

erate a conical hole in the ground. The larvae shelter 

below the bottom of the cone after drilling the trap 

and readily anticipate their insect to pass through the 

hole as seen in Figure 1. It is removed and degraded 

as the prey is captured. When an ant approaches the 

cone, the antlion throws sand over the ant to slide it 

to the bottom of the hole. The antlion then raises the 

distance for the next catch. The ALO algorithm is 

defined as a function of three rows that converge as 

follows with the global optimum of optimization 

issues: ALO (A; B; C), where A is a function that 

produces arbitrary initial solutions, B, when reach-

ing the ultimate norm, treats the first set given by 

function A and C. The antlion and ant are randomly 

generated in the ALO algorithm. The location of 

each ant relative to the antlion chosen by the roulette 

wheel operator and elite is changed at each iteration. 

The threshold for site changes is specified first about 

the current number of iterations. Then, by two ran-

dom rounds of chosen ants and elites, the revised 

site is implemented. If all the ants walk randomly, a 

fitness function is used to estimate them. If any of 

the ants are more desirable than any other ant, their 

locations in the next iteration are intended to be new 

sites for the ants.  

The best antlion is connected to the best antlion 

generated during optimization (elite) and is, if nec-

essary, substituted. Such steps are iterative before 

false returns. 

Fig. 1. the hunting process and behavior of antlion. (Anas 

Atef Amaireh, Asem Alzoubi, Nihad I Dib, 2017). 

 For each possible DAG, the Bayesian network 

solution region is generated for structure learning. 

For a given problem in the search space, the ants in 

the ALO algorithm represent the potential random 

solutions and the Antlions drill holes in the ground 

to trap and eat ants. An antlion’s hunting capacity is 

encoded in the objective feature and is optimized 

based on the relationship between ants and antlions. 

When modeling the optimization problem using the 

essence of the hunting activity of antlions, there are 

several laws to consider. A potential solution that 

represents a DAG having empty arcs is initiated by 

any antlion within the swarm. The exploration area 

for the roughly near-optimal or optimal solution, 

known as the BDe score, is later analyzed by an ant-

lion. Equation (4) is used as the target function of 

the optimization to determine the BDe score. The 

goal of the exploration is to obtain a greater BDe 

score for the structure of the network. The initial 

solutions are created by iterative operations and the 

search space boundary is chosen. The arcs are ap-

pended one after another, beginning with a null 

graph (G0), given they are not included in the cur-

rent graph solution. The append operation is done 

only if the new solution's score function is greater 

than the current score and the new solution also 

meets the DAG constraint. This approach proceeds 

until the sum of the arcs equals the amount specified 

in advance. The solution begins to allocate a popula-

tion for each operator in the model and chooses the 

solution with a higher score function. According to 
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the chosen operator, Antlion continues until the 

method has completed a sufficient number of itera-

tions or no longer raises the BDe score. In local op-

timization, the processes usually involve four dif-

ferent operations: Elimination, Extension, Reversion, 

and Movement, as seen in Figure 2. Within this do-

main, the first three are basic operations, requiring 

only replacing an individual edge from a rival solu-

tion every time. This causes a relatively small region 

near the solution to be used. On the other hand, the 

existing edges modify the collection of parents for 

any movement process, which will allow a moder-

ately significant change for the current solution. 

Therefore, if, after applying basic operators, the so-

lution is not modified, the moving operator will 

boost it. Walking is the key force in local optimiza-

tion using the preferred operation, which expands 

more as an antlion reaches the desired solution.  

Walking directions, the turn of different local 

optimization operators, is becoming more wide-

spread as an antlion constantly travels from a solu-

tion to a stronger one by experimentation. An antlion 

G0, which represents a DAG with arcs, attempts 

reversion, movement, extension, and deletion as 

seen in Figure 2, and reaches new G1, G2, G3, and 

G4 solutions, respectively. It will pick, thinking the 

best score is in G3, and it will begin to explore a 

similar method to get G+3 as the new solution. If 

G+3's BDe score is greater than that of G+1, the 

subsequent operator will continue to perform. Until 

the BDe score stabilizes, the operations can repeat, 

or the iteration loop completes the limit. The antlion 

chooses Elimination, Extension, Movement and Re-

version among the directions in the entire process. 

The ALO algorithm pseudocode is seen in figure 3.

 

 

Fig. 2. Hunting searching steps for ALO
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5. Experimental Evaluation  

A common validation methodology is used to 

test the algorithm efficiency of ALO by using prob-

abilistic datasets derived from famous Bayesian 

network benchmarks. A PC with the following prop-

erties is used in the experiment platform: Core i3, 

2.1GHz Clock, 4 GB RAM, Ubuntu 14.04 operating 

system and uses Java to execute the algorithm. In 

multiple static datasets, the authors investigated the 

properties of the proposed algorithm, including; 

Andes (500 instance, 338 arcs, and 223 variables),  

Lucap02 (10000 instance, and 143 variables), 

win95pts (574 instance, 112 arcs, and 76 variables), 

Hepar (350 instance,  123 arcs, and 70 variables), 

Hailfinder (2656 instance , 66 arcs, and 56 variable), 

Alarm (10000 instance,  46 arcs, and 37 variables), 

Soybean (307 instance and 35 variables), Hepati-

tis(137 instance and 35 variables), Static Banjo (320 

instance and 33 variables), Water (10083 instance, 

66 arcs, and 32 variables), Epigenetics (72228 in-

stance and 30 variable), Insurance (3000 instance, 52 

arcs, and 27 variables), Sensors(5456 instance and 

25 variables), Mushroom (1000 instance and 23 var-

iables), Parkinsons (195 instance and 23 variables), 

Heart(267 instance and 22 variables), Imports(205 

instance and 22 variables), Child (230 instance, 25 

arcs, and 20 variables), Letter (20000 instance and 

17 variables), Adult (30162 instance and 16 varia-

bles), Lucas01(10000 instance and 10 variables), 

Algorithm: Antlion Algorithm for Bayesian Network Structure Learning.  

INPUT: - datasets 

NE: The size of the population  

D: search space dimension    

Search range: the search space border 

tmax: maximum number of iterations; Xmax: upper boundary, and Xmin: - lower boundary  

OUTPUT: - Structure learning Bayesian Network with BDe Score of Best Structure. 

 

(1) The initialized empty structure and initialize parameters of ALO algorithm (dimension space D, size of popula-

tion NE, the number of iteration, upper boundary (Xmax)and lower boundary (Xmin), and Xmax > Xmin. 

(2) Comparing each antlion by BDe score function, and find the elite antlion in the current position (  ). 

(3) While the end criterion is not satisfied 

I. Find a new best position by comparing the BDe score function of each antlion, through updating the 

,  in using equation (8) 

II. Create a random walk and normalization using equation (5) and (7) 

III. Update the antlion position using equation (11).  

(4) Calculate the BDe score function. 

(5) Evaluate BDeu score function of the new position using equation (12). 

a. If the new position is better than the best, so the best position is updated. 

b. If the (best global position) < current position, then update the best solution for global 

c. The best score value and solution are saved. 

d. If Xmin  Xmax, stop the iteration process, and the results are present. If not, move into 

Step 5. 

(6) Return the maximum BDe score. 

 
Fig. 3. ALO Algorithm for Bayesian network structure learning 
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WDBC (1000 instance and 9 variables), and Asia 

(3000 instance, 8 arcs, and 8 variables) (Kareem and 

Okur, 2019). This study is based on the stationary 

data presumption in the present form, and stationery 

sets are the learning datasets that we considered. It is 

a difficult job to apply the ALO algorithm to sensor 

data sets or other kinds of online stream data sets 

and should be tried after testing its output over sta-

tionary data sets. It is a difficult job to apply the 

ALO algorithm to sensor data sets or other kinds of 

online stream data sets and should be tried after 

testing its output over stationary data sets. Pigeon 

Inspired Optimization (PIO) (Kareem and Okur, 

2019). Hybrid Simulated Annealing with Bee (BSA) 

(Kareem and Okur, 2017), Simulated Annealing, 

Hybrid Greedy with Bee (BGS) (Kareem and Okur, 

2018), and Greedy Search methods are correlated 

with the performance of ALO by using the respec-

tive data set metrics. Both algorithms under the same 

conditions were tested by the authors. Global and 

Local searches are added to the datasets after speci-

fying the parameters of the ALO algorithm. Popula-

tion size N=50 and tmax = 10000 are both fixed pa-

rameters of ALO optimization for each event. The 

simulated annealing algorithm parameters are as 

follows: re-annealing temperature = 500, cooling 

factor = 0.8, original temperature = 1000. Greedy 

quest parameters are as follows: recommended 

maximum networks before reboot = 5000, suggested 

minimum networks before reboot = 3000, reboot by 

random network = yes, recommended minimum 

networks after maximum score = 1000 maximum 

parent count for operations Reboot = 5. Pigeon pa-

rameters are the search space dimension (D=20), the 

number of pigeons (NP=300), the maximum number 

of iterations for the map and compass operation 

(Nc1max=5000), the map and compass factor 

(P=0.3), and the maximum number of iterations for 

the landmark operation (Nc2max=10000). The Bee 

algorithm parameters are: Number of Scout Bees n= 

200, Number of repetitions of algorithm steps imax= 

10000, Number of best site e out of m chosen site= 7, 

Number of Sites m out of n visited sites= 30, Num-

ber of Bees needed for best e site n2= 90, Initial size 

of patches ngh including randomly chosen site= 200, 

Number of Bees needed for the other site (m-e) (n1) 

= 30. Three separate execution times have been ap-

plied by the algorithms: 60, 5, and 2 minutes. 

In the data sets and time values listed, the re-

sults in Table 1,2,3 indicate the score for each algo-

rithm. It can be observed from these tables that the 

approach suggested yields better score values for all 

conditions than the default Greedy Search, and Sim-

ulated Annealing Algorithms. 
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Table 1. The ALO, Simulated Annealing, PIO, Hybrid Bee with Simulated Annealing, Hybrid Bee with Greedy, and 

Greedy Score function in 2 minutes Execution time. 

 

Dataset 

2 Minutes 

ALO PIO 
Simulated 

Annealing 

Hybrid Bee 

with Simulated 

Annealing 

Greedy 
Hybrid Bee  

with Greedy 

Asia -55049.9 -55269.5 -56340.3 -56158.6 -56340.3 -56258.7 

WDBC -6658.43 -6666.04 -6682.72 -6675.42 -8089.41 -8080.83 

lucas01 -11863.1 -11860 -12243.2 -12235.3 -13890.9 -13795.3 

Adult -207805 -207809 -211678 -211670 -211844 -211850 

Letter -175185 -175200 -178562 -178550 -184307 -184205 

Child -62364 -62362 -62343.7 -62341.8 -63336.6 -63325.2 

Heart -2424.49 -2423.8 -2432.19 -2423.8 -2576.93 -2570.56 

Imports -1811.99 -1811.99 -1828.91 -1820.26 -1994.15 -1982.59 

spect.heart -2141.05 -2142.5 -2141.47 -2141.23 -2144.65 -2144.2 

Parkinson’s -1488.52 -1598.91 -1601.3 -1600.92 -1732.76 -1715.57 

Mushroom -3162.28 -3372.51 -3375.31 -3374.18 -3745.46 -3745.46 

Sensors -60341.9 -60343.3 -60710.5 -60508.7 -69200.3 -68962.5 

insurance -13896.4 -138997 -13872.3 -13870.6 -13904.6 -13904 

Epigenetics -176641 -176657 -179910 -179906 -225346 -225340 

Water -11563.4 -13269.5 -13290.8 -13262.6 -14619.1 -13262.8 

static. Data -8427.12 -8425.72 -8451.5 -8449.49 -8585.21 -8570.26 

Hepatitis -1326.58 -1327.73 -1330.47 -1329.97 -1350.16 -1346.5 

soybean -2870.3 -2870.2 -2870.85 -2859.13 -3021.41 -3025.82 

Alarm -105155 -105150 -104927 -104927 -105972 -105552 

Hail finder -75592.4 -89521.6 -148193 -148180 -153602 -152038 

Hepar -160095 -160095 -161086 -161050 -169497 -161051 

win95pts -46772.8 -46779.5 -47085.1 -47032.4 -83749.3 -83650.8 

Lucap2 -112982 -186368 -112261 -111413 -151215 -151243 

Andes -498180 -613197 -497353 -477461 -591871 -589927 



S. W. Kareem, A. S. Mohammed, etc. / Int. J. Systematic Innovation, 7(1), 46-65 (2022) 

57 

http://www.IJoSI.org 

 

 

 

 

 

Table 2. The ALO, Simulated Annealing, PIO, Hybrid Bee with Simulated Annealing, Hybrid Bee with 

Greedy, and Greedy Score function in 5 minutes Execution time. 

ataset 

5 Minutes 

ALO PIO 
Simulated 

Annealing 

Hybrid 

Bee with 

Simulated 

Annealing 

Greedy 

Hybrid 

Bee with 

Greedy 

Asia -55157.2 -55852.6 -56340.3 -56218.5 -56340.3 -56320.9 

WDBC -6662.24 -6666.04 -6682.72 -6675.52 -7954.65 -75236.7 

lucas01 -11512.5 -11892.5 -12243.2 -12229.7 -12243.2 -12230.4 

Adult -207328 -207809 -211678 -211664 -211781 -211756 

Letter -175200 -175200 -178562 -178523 -184916 -182584 

Child -62363.8 -62369.2 -62343.7 -62140.7 -63799.4 -63235 

Heart -2424.81 -2423.8 -2423.8 -2423.8 -2560.43 -2545.2 

Imports -1811.99 -1811.99 -1828.91 -1824.3 -2012.21 -1950.3 

spect.heart -2129.27 -2132.82 -2143.73 -2140.85 -2142.89 -2141.25 

Parkinson’s -1441.27 -1598.91 -1601.3 -1600.58 -1721.16 -1701 

Mushroom -3162.45 -3372.51 -3375.31 -3375.51 -3709.7 -3625.4 

Sensors -60343.3 -60343.3 -60710.5 -60642.2 -69150 -66250 

insurance 13895.11 -13895.1 -13872.3 -13842.7 -13904.6 -13892.3 

Epigenetics -176637 -176657 -179300 -179296 -224172 -224162 

Water -11564.4 -13269.5 -13290.8 -13262.6 -14644.7 -13264.5 

static. Data -8414.4 -8425.2 -8449.77 -8445.41 -8561.93 -8448.24 

Hepatitis -1327.73 -1327.73 -1330.47 -1328.62 -1350.16 -1340.3 

soybean -2973.3 -2973.3 -2857.82 -2863.82 -3011.38 -2991.81 

Alarm -105167 -105182 -104927 -104927 -106114 -106171 

Hail finder -75583.9 -75698 -148188 -148179 -153075 -151863 

Hepar -160095 -160095 -161086 -161049 -169881 -163375 

win95pts -46779.5 -46779.5 -47085.1 -47023.7 -83150.7 -75201.5 

Lucap2 -110425 -175635 -112217 -110834 -152092 -151913 

Andes -48572 -613180 -489796 -480065 -588503 -584605 
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Table 3. The ALO, Simulated Annealing, PIO, Hybrid Bee with Simulated Annealing, Hybrid Bee with Greedy, and 

Greedy Score function in 60 minutes Execution time. 

 

 This means that with the minimal time needed, 

the ALO finds the best score. Another achievement 

of ALO optimization is observed for various values 

of population and the highest repetition quantity of 

the algorithm. The value of population and highest 

iteration number chosen of these sets {50, 75, 100, 

1000, 2000, 3000, 4000, 5000}, respectively.  It is 

observed that the score function is completely satis-

fying for all datasets. Furthermore, for some datasets, 

increment in the highest repetition number has less 

effect on score fitness. Nevertheless, if increase the 

population number, the score function weakens con-

siderably. But, the increase in population and the 

repetition amount will reach to larger computational 

time. The confusion matrix is often used to measure 

the success of structure discovery. Using existing 

network architectures, each algorithm and data set 

may be assigned a confusion matrix value. It is the 

Dataset 

60 Minutes 

ALO PIO Simulated 

Annealing 

Hybrid Bee 

with Simu-

lated An-

nealing 

Greedy Hybrid Bee 

with 

Greedy 

Asia -30584 -30850 -56340.3 -56340 -56340.3 -56340 

WDBC -6662.25 -6666 -6682.72 -6679.63 -7841.35 -7752.35 

lucas01 -11213.8 12115.38 -12243.2 -12212.9 -12243.2 -12236.4 

Adult -207457 -207809 -211678 -211664 -211762 -211739 

Letter -175200 -175200 -178562 -178510 -184118 -182269 

Child -62245.7 -62275.2 -62343.7 -62312.4 -63799.4 -63756.9 

Heart -2422.57 -2423.8 -2432.19 -2423.8 -2527.44 -2522395 

Imports -1811.25 -1812 -1828.91 -1824.3 -1995.76 -1950.2 

spect.heart -2130.87 -2135.4 -2144.13 -2144.1 -2142.24 -2142.24 

Parkinson’s -1442.87 -1598.9 -1601.3 -1695.25 -1700.36 -1693.58 

Mushroom -3019.91 -3372.5 -3375.31 -3374.57 -3588.69 -3524.83 

Sensors -60343.3 -60343 -60710.5 -60612.5 -68364 -67825 

insurance -13912.7 -13950 -13872.3 -13850.6 -13904.6 -1385.62 

Epigenetics -176642 -176657 -179300 -179296 -217246 -217212 

Water -11812.7 -13270 -13290.8 -13262.2 -14272 -13262 

static. Data -8325.27 -8368.4 -8445.36 -8552.37 -8556.7 -8552.4 

Hepatitis -1327.7 -1327.7 -1330.47 -1328.62 -1350.16 -1346.52 

soybean -2973.3 -2973.3 -2973.83 -2992.99 -3012.72 -2993 

Alarm -104884 -104915 -104927 -105271 -105377 -105271 

Hail finder -75852.4 -78293 -148183 -151773 -152299 -151773 

Hepar -160095 -160095 -161086 -163231 -168871 -163231 

win95pts -46780 -46780 -47085.1 -470016 -83150.7 -80253.4 

Lucap2 -105289 -105621 -111275 -151160 -150938 -151160 

Andes -469254 -469342 -480491 -480253 -586760 -587098 
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goal of this study to make a direct comparison be-

tween an existing network's structure and the one 

being constructed. To generate the confusion matrix, 

we first require a collection of predicted networks 

that can be compared with the real network. There 

are rows for the actual classes and columns for the 

expected classes in a confusion matrix. We need to 

construct the confusion matrix for each data set and 

its known network structure to verify the effective-

ness of structure discovery. 

The confusion matrix was being measured with 

each data set and its identified network structure to 

determine the performance of structure discovery. 

For each network, per algorithm, the metrics TN, TP, 

FP, and FN, were determined as well as the criteria; 

AHD, Accuracy (ACC), F1 Score, and Sensitivity 

(SE), defined as: 

   AHD=        (15)                          

   F1Score       (16)                               

       Accuracy     (17)                                             

       Sensitivity          (18)              

The definitions of certain criteria would be as 

follows: The FN is the arc in the routine, but not in 

the learning network. FP is the arc that is not in the 

normal network within the learning network. In 

neither the learning network nor the normal network, 

TN is the arc inside A TP is an arc (vertex or edge) 

within the learning network in the correct position. 

In Figure 4, the sensitivity outcomes for ALO, 

PIO, Simulated Annealing and Greedy are shown. In 

the multiple datasets, the suggested strategy yields 

better values than PIO, Virtual Annealing and 

Greedy. Similarly, as seen in Figure 5, the suggested 

approach has high precision values in most datasets 

relative to the Simulated Annealing and Greedy 

algorithms. In finding the required structure, the 

proposed ALO Learning Algorithm performs well. 

As a consequence, the Iterative ALO algorithm is the 

best in most datasets from the point of estimation 

accuracy relative to other algorithms, and the ALO is 

even greater than the other algorithms from the point 

of construction times. For success indicators, we 

used F1 as a measure of the model's precision, in 

addition to the best score in Bayesian results. To 

measure the efficiency of the proposed algorithm, 

the F1- score, Accuracy, and Recall are used. In 

these cases, accuracy is the number of correctly 

identified guided edges divided by the number of all 

the edges in the predicted BN. The Recall is a 

partition of the number of directed edges identified 

in the real BN by the number of edges. It is known 

that the harmonic average of precision and recall is 

F1. The comparison of ALO is presented in figure 6, 

Greedy search, and Simulated Annealing. Perfection 

in these cases may be measured by finding all 

directed edges in a given BN and dividing it by the 

number of edges in the predicted BN. The number of 

directed edges detected divided by the total number 

of edges in the BN is what is represented by the 

Recall. Precision and recall, which constantly range 

between zero and one, make up the F1-score.  



S. W. Kareem, A. S. Mohammed, etc/ Int. J. Systematic Innovation, 7(1), 46-65 (2022) 

60 

http://www.IJoSI.org 

 

Fig. 4. Sensitivity for ALO, PIO, Simulated Annealing, and Greedy. 

 

 

Fig. 5. Accuracy for ALO, PIO, Simulated Annealing Greedy 

 

At 1 an F1 score is at its highest value, while at 

0 it is at its lowest. The proposed methods are 

successful, as seen in Figure 6, than the Greedy 

search and Simulated Annealing Methods.  

 

In addition, the model's ultimate aim is to 

provide a convenient representation of the real world, 

so consistency is a valuable model performance 

measurement metric. 
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Fig. 6. F1_ Score for ALO, PIO, Simulated Annealing Greedy

The Hamming distances obtained by utilizing 

the DAG space are always much smaller than those 

obtained by using the suggested approach. As one of 

the most often used assessment measures for 

BN-structured learning, hamming distances fit the 

structure of students and the real networks, and they 

are focused exclusively on exploration rather than 

inference. The findings show that the suggested 

strategy outperforms the other methods that we've 

studied in terms of performance. Error correction 

often makes use of the Hamming distance. 

From the Hamming distances, which are often 

considerably lower than those obtained by using the 

DAG space, the suggested algorithm is also prefera-

ble. Hamming distances are one of the most often 

used assessment criteria for BN structure learning, 

and often explicitly fits the learners' configuration 

and local networks are entirely geared towards dis-

covery rather than inference. For the listed algo-

rithms, Figure 7 shows the Average Hamming Dis-

tances. The findings suggest that the approach pro-

posed provides higher output values than the other 

approaches we have considered

 
Fig. 7. AHD for ALO, PIO, Sim-

ulated Annealing and Greed 
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6. Conclusion       

The authors concentrated on the learning issue 

of the Bayesian network structure and introduced 

the Antlion Motivated Optimization method for 

Bayesian network structure learning. The score and 

check strategy is used, using the ALO technique as 

a search and BDeu as a function of the score. ALO 

can be defined as a stochastic search method based 

on antlions' navigational behaviors. ALO is a 

general method of looking for a separate solution 

space; it can therefore be modified to accommodate 

any implementation field. Concentration 

management in ALO provides the global extremum 

with improved concentration by allowing the 

antlion to travel to the shortest available solution 

space. The suggested approach has a higher search 

capability, which means that better structure 

solution can be detected, higher score feature 

values measured, an excellent approximation to the 

structure of the network, and the results are correct. 

Algorithms accelerate global quest and easily 

contribute to global convergence. We expect to 

analyze other important ALO characteristics such 

as: run time analysis, use of energy, overall 

performance using additional data sets and 

experimental setups.  
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