DOI: 10.6977/1J0S1.202510_9(5).0004
R. Ch, K. Dasari, etc./Int. J. Systematic Innovation, 9(5), 43-55 (2025)

An adaptive hybrid clustering framework for high-precision
microarray image segmentation using GA and BEMD

Ravikumar Ch'*, Kavitha Dasari?, Satyanarayana Nimmala®, Sukerthi Sutraya“, R. Sahith’

'Department of Computer Science and Engineering, School of Engineering, Sreenidhi University, Hyderabad,
Telangana, India

“Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), G.
Narayanamma Institute of Technology and Sciences, Hyderabad, Telangana, India

3Department of Computer Science and Engineering (Data Science), CVR College of Engineering, Hyderabad,
Telangana, India

“Department of Computer Science and Engineering (Data Science), G. Narayanamma Institute of Technology and
Sciences, Hyderabad, Telangana, India

SDepartment of Computer Science and Engineering, CVR College of Engineering, Hyderabad, Telangana, India
*Corresponding author E-mail: ravikumar.c@suh.edu.in

(Received 08 May 2025; Final version received 24 July 2025; Accepted 04 August 2025)

Abstract

The development of microarray technology has facilitated expression profiling analysis for various medical and
agricultural research areas. Despite the increasing range of applications, precision in isolating microarray images
remains a challenge due to noise and variances in spot morphology. This research proposes a hybrid and adaptive
clustering solution that offers significant improvement in terms of accuracy, segmentation, noise reduction,
processing time, and overall efficiency. The study used an adaptive K-means clustering approach enhanced with
genetic algorithms and bi-dimensional empirical mode decomposition. This hybrid framework achieved an average
segmentation accuracy of approximately 95%, compared to 85% with conventional K-means, showing its superiority.
In addition, the enhanced method achieved unparalleled noise reduction by 80% and improved signal-to-noise ratio
by 200%, while maintaining efficiency with an average image processing time of 1.2 s. These results uniquely address
complex challenges in microarray image analysis, unlocking new solutions critical for gene profiling in medicine and
agriculture, and driving transformative advancements in the sectors.

Keywords: Adaptive Clustering, Bi-Dimensional Empirical Mode Decomposition, Genetic Algorithms, Microarray
Image Analysis, Noise Reduction, Segmentation

1. Introduction and learning techniques. As summarized in Table 1,
recent studies have implemented various enhancement
strategies such as Kalman-based filtering (Pan et
al., 2016; Pfleger et al., 2019; Roonizi & Selesnick,
2022) and adaptive denoising frameworks (Yang et
al., 2010; Zhang, 2022), which improve image clarity
while maintaining computational efficiency. Similarly,

Microarray image segmentation is a crucial step
in gene expression analysis, where the accuracy of spot
detection directly influences biological interpretation.
Traditional image segmentation approaches, including
thresholding and region-based methods, often suffer

from issues such as noise interference, uneven entropy-based and bio-inspired algorithms (Naik et al.,
illumination, and overlapping spots. To overcome 2021; Eluri & Devarakonda, 2023) have demonstrated
these challenges, researchers have explored advanced effective noise suppression and clustering accuracy
and hybrid algorithms that integrate optimization across biomedical imaging domains.
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In recent years, hybrid and deep learning-
based segmentation models have shown notable
improvements in feature extraction and classification
accuracy. For example, Roth et al. (2022) and Ch et
al. (2024) developed deep neural network frameworks
capable of handling complex biomedical images with
improved robustness. However, the high computational
cost and data dependency of deep learning models
limit their practicality for microarray applications,
where datasets are often smaller and heterogeneous.
Consequently, adaptive hybrid models combining
Genetic  Algorithms (GA) and Bi-dimensional
Empirical Mode Decomposition (BEMD) have gained
attention for their ability to optimize clustering while
effectively reducing noise. Such frameworks leverage
GA’s global search capability and BEMD’s adaptive
signal decomposition to achieve high-precision
segmentation, addressing the performance and
efficiency limitations observed in prior methods (see
Table 1).

Recent research attempts to enhance the
performance of microarray image segmentation
using techniques such as particle swarm optimization
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Fig. 1. Microarray image with gridded spots

Adapted from Jiang et al. (2021)
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Fig. 2. Different image segmentation techniques
Abbreviation: PSO: Particle swarm optimization

(PSO), deep learning, and genetic algorithm (GA).
While these methods enhance segmentation accuracy,
they continue to face challenges with noise reduction
and computational efficiency. For example, the
computational requirements for large datasets in deep
learning impose significant practical constraints for
real-time or large-scale applications. Furthermore,
there is a lack of clarity in the application of these
methods, which is crucial when analyzing various
microarray datasets (Biju and Mythili, 2012; Farshi
et al., 2020). An example of a microarray image with
gridded spots is shown in Fig. 1.

Fig. 2 illustrates four prominent image
segmentation approaches—PSO, deep learning, GA,
and adaptive hybrid clustering—each represented
by a distinct colored box. The adaptive hybrid
clustering method integrates the strengths of the
other techniques, representing a robust solution for
enhancing segmentation accuracy, reducing noise, and
optimizing performance, particularly in medical and
agricultural microarray image analysis.

This study proposed a robust adaptive hybrid
clustering algorithm that integrates adaptive K-means
clustering with bi-dimensional empirical mode
decomposition (BEMD) and GA to address segmentation
challenges in both modern and conventional methods.
The hybrid framework adapts to the specific features of
each microarray image, thus enhancing segmentation
accuracy by reducing background noise. Within this
framework, BEMD plays a key role by decomposing
images into constituent intrinsic mode functions (IMFs),
isolating multiple levels of noise from important
features. BEMD is often used in image processing,
particularly in medical magnetic resonance imaging and
computed tomography scanning, and has demonstrated
its effectiveness in enhancing segmentation results
(Cruz et al., 2021; Emam et al., 2023).

A

Fig. 3. Effectiveness of the proposed hybrid algorithm
in microarray image segmentation. (A) Clustering
illustration. (B) Segmentation results
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Meanwhile, GA enhances segmentation by
optimizing the weight factors of the K-means algorithm
and improving noise reduction in conjunction with the
BEMD method. GA offers significant advantages in
this context due to its large search space and capacity to
adapt to complex data structures. This hybrid method
delivers both flexibility and efficiency, providing
robust solutions vital for accurate microarray image
segmentation, an indispensable step in gene profiling
for medical and agricultural research (Biju and Mythili,
2012; Gharehchopogh and Ibrikei, 2024).

Fig. 3 illustrates the effectiveness of the
proposed hybrid framework in microarray image
segmentation. Fig. 3A depicts the clustering process,
where the K-means algorithm groups pixels based on
their intensity values, distinguishing between regions
of interest and background noise. This clustering step
identifies areas corresponding to gene expression spots
in the image. Fig. 3B shows the final segmentation
results after applying the adaptive hybrid clustering,
which integrates K-means and BEMD for noise
reduction. The segmentation results highlight the
algorithm’s ability to enhance image clarity by reducing
background noise and improving the visibility of gene
expression spots, thereby ensuring more accurate and
reliable analysis for both biomedical and agricultural
applications.

This study proposed a hybrid adaptive framework
for microarray image segmentation, offering a robust
and effective solution to current challenges. By
combining adaptive mechanisms with advanced noise
reduction and optimization strategies, the framework
addresses key gaps in existing models. Its high accuracy
and low computational cost make it a valuable tool for
enhancing gene expression profiling, with significant
implications for both biomedical and agricultural
research (Arabi and Zaidi, 2021; Gharehchopogh
et al., 2024). The key contributions include:

(i) An adaptive clustering approach is constructed
based on the silhouette coefficient, enabling
automatic estimation of the number of clusters
without manual input

Noise suppression and segmentation accuracy
are enhanced through the integration of BEMD
and GA, both of which adapt to the specific
characteristics of microarray images
Segmentation accuracy is improved, achieving
higher accuracy in gene expression profiling
within both biomedical and agricultural research
contexts

The proposed framework, designed as a hybrid
adaptation of conventional clustering methods,
is evaluated, demonstrating an average increase
of 20% in segmentation accuracy and noise
reduction.

(i)

(iii)

(iv)
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2. Literature Review

The accuracy of microarray image segmentation
directly affects how well we can assess gene expressions
in clinical and agricultural studies. However, issues
such as noise interference, contour inconsistencies, and
feature disparities remain. Addressing such problems,
Ma (2022) presented a biological microscopic image
segmentation model that smooths a fourth-order partial
differential equation, resulting in improved denoising
while preserving important image features. Likewise,
Talha et al. (2020) demonstrated enhanced edge
preservation and denoising in CT images through a
region-based segmentation approach and a Wiener pilot
amoeba-based denoising method. Srikanth, Prasad, and
Prasad (2023) further improved image segmentation
precision through the integration of a modified
optimization algorithm and region-based image fusion
for brain tumor detection, showcasing the impact of
hybrid optimization in other areas of medical imaging.
Likewise, Wang et al (2022) created a Latin square
matrix encryption algorithm and demonstrated the
use of mathematical models in bolstering the security
and image reliability processing. Also important,
Yang et al. (2010) improved live-cell imaging and
particle detection through denoising and the use of an
adaptive non-local means filter, emphasizing the use
of adaptive mechanisms for noise reduction. Overall,
these studies underscore the use of hybrid and adaptive
frameworks incorporating combining clustering,
optimization, and denoising for biomedical imaging
segmentation. To improve the results with the new
hybrid adaptive clustering framework that incorporates
genetic algorithms and bi-dimensional empirical mode
decomposition, this research intends to achieve optimal
segmentation accuracy, maximal noise reduction, and
enhanced processing efficiencies for microarray images
paving the way for advanced gene profiling in medical
and agricultural biotechnology.

Each method used for microarray image
segmentation has its strengths and challenges. Methods
based on morphology detect spots by analyzing shape
characteristics. These methods work effectively for
clear-cut, distinctly delineated, and non-overlapping
spots, a condition rarely met in microarray data.
Morphology techniques can fail when confronted
with irregular spot shapes, inconsistent intensity
distributions, or overlapping borders (Arabi and Zaidi,
2021; Bal et al.,, 2020). Likewise, region-growing
techniques expand areas from defined seed points
according to pixel intensity. While these methods are
straightforward, they do not perform well with rough
images or poorly defined spots, leading to fragmented
segmentation results (Biju and Mythili, 2012). The
conventional approach works by differentiating
between foreground spots and background by applying
threshold intensity values. This technique relies on


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/1J0S1.202510_9(5).0004

R. Ch, K. Dasari, etc./Int. J. Systematic Innovation, 9(5), 43-55 (2025)

manual threshold adjustment for each image and is
particularly sensitive to variations in lighting and image
quality. Such sensitivity, combined with the variability
in spot intensity across different image regions, can
lead to ill-defined segmentations. Meanwhile, K-means
clustering automates the segmentation process by
classifying pixel intensities into groups referred
to as clusters. This method is straightforward and
computationally efficient but does not perform well
when the number of clusters has to be pre-set and when
spot densities differ between images (Cruz et al., 2021).
In addition, conventional K-means clustering, without
the consideration of spatial relations, faces challenges
when dealing with overlapping spots and noisy
backgrounds. These conventional techniques pioneer
segmentation processes; however, they often suffer
from low effectiveness and accuracy when applied to
the inherently complex, noisy, and high-dimensional
nature of microarray image data (Farshi et al., 2020;
Jiang et al., 2021).

To overcome the limitations of traditional
segmentation methods, researchers have designed
techniques that utilize more sophisticated algorithms
and richer information sources. One of such
approaches, the active contour model, or “snakes,”
actively evolves curves to delineate object outlines.
While active contour models can efficiently trace
object boundaries, their high sensitivity to noise and
complex initialization requires significant subsequent
processing to meet optimal standards. Furthermore,
they are often costly in terms of computational
resources, limiting their use in large-scale datasets
such as microarrays (Belgrana et al., 2020; Emam
et al.,, 2023). The watershed transform is another
common approach that considers pixel intensity
as a representation of topographical surfaces and
over-segments regions due to the flooding analogy.
Although the watershed transforms are able to execute
precise segmentation, especially in greatly contrasted
images, they have a high chance of over-segmenting
noisy environments, making the subsequent fine-
tuning process both complex and time-consuming
(Gharehchopogh and Ibrikei, 2024). Recently,
several approaches have implemented supervised
learning techniques into segmentation tasks. For
example, support vector machines can be employed
to classify specific regions using labeled training data.
Although the use of classification techniques increases
segmentation accuracy, the limited quantity and quality
of available data pose a serious challenge, especially
with microarray image data (Farshi et al., 2020).

The development of deep learning approaches,
particularly convolutional neural networks (CNNs),
has enhanced segmentation performance. CNNs excel
at image processing tasks by automatically learning
hierarchical features from data, allowing them to capture
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more complex patterns and handle noise effectively.
Other models, such as U-Net and Mask R-CNN, have also
achieved remarkable accuracy in image segmentation
tasks, including biomedical applications (Cruz et al.,
2021; Jiang et al., 2021). Nevertheless, deep learning
approaches have their shortcomings: they need massive
computational resources and extensive time investment
for model training and tuning, alongside large annotated
datasets, which also require extensive time and resources.
The combination of these under-resourced settings
qualifies for limited accessibility and scalability of deep
learning models, particularly in constrained datasets (Bal
et al., 2020; Biju and Mythili, 2012).

2.1. Hybrid Approaches

To address segmentation challenges, it has
become customary to employ combined sophisticated
multi-algorithm techniques, with each algorithm
contributing its share of advantages and disadvantages.
Each of these methods attempts to enhance accuracy,
robustness, and noise resilience (Gharehchopogh and
Ibrikei, 2024). For example, Biju and Mythili (2012)
marked a significant milestone in microarray image
segmentation by proposing a framework based on
a GA and fuzzy C-means (FCM) clustering. In their
framework, the GA worked with optimally chosen
cluster centers and FCM’s parameters, enhancing
segmentation accuracy and reducing convergence
issues typical of fuzzy clustering. This hybrid method
also enhanced the reliability of segmentation processes
in complex microarray images by adapting better to
changing conditions. Kollem et al. (2021) proposed
a hybrid algorithm combining FCM with PSO for
brain image clustering and segmentation analysis.
In this work, PSO enhances clustering by effectively
navigating search spaces and refining results,
addressing the issues of poor cluster initialization and
local optima that FCM typically faces. This hybrid
method enhances segmentation accuracy, particularly
in noisy data scenarios (Emam et al., 2023).

Maryam et al. (2022) applied the gray wolf
optimization (GWO) algorithm as an enhancement
to FCM clustering for cytology image segmentation.
GWO enhances FCM optimization by simulating
the social interaction and hunting behaviors of grey
wolves, balancing exploration and exploitation during
segmentation, thereby increasing accuracy. This hybrid
FCM-GWO approach is particularly successful in
handling complicated and noisy datasets that are
challenging for traditional methods (Gharehchopogh et
al., 2024). In addition, Dorgham et al. (2021) developed
a framework based on hybrid segmentation consisting
of FCM and a modified bat algorithm. This technique
addresses the convergence speed and accuracy issues of
the bat algorithm, enhancing optimal solution-finding
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Table 1. Comparative analysis of traditional, advanced, and hybrid image segmentation techniques

Category | Technique Description Strengths Limitations References
Traditional | Morphology-based | Utilizes shape Good for Struggles with irregular | Arabi and Zaidi
techniques characteristics for spot | well-defined or overlapping shapes (2021)
identification shapes
Region-growing Expands regions based | Simple and May produce Bal et al. (2020)
on seed points and intuitive fragmented results in
pixel intensity noisy conditions
Threshold-based Segments images Straightforward Requires manual Biju and Mythili
based on intensity and easy to tuning; sensitive to (2012)
thresholds implement variations
Clustering Partitions images into | Computationally Requires a predefined Cruz et al. (2021)
(K-means) clusters based on pixel | efficient number of clusters;
intensity struggles with varying
spot sizes
Advanced | Active contour Delineates object Effective for Sensitive to Jiang et al. (2021)
techniques | models (snakes) boundaries by well-defined initialization and noise;
evolving curves boundaries requires extensive
preprocessing
Watershed Segments images by Can achieve fine Prone to Farshi et al.
transforms treating intensity as a | segmentation over-segmentation; (2020)
topographical surface requires post-processing
Support vector Classifies pixels based | High accuracy Depends on Emam et al.
machines on training data with good data high-quality labeled (2023)
data
Deep learning Uses neural networks | High accuracy and | Requires large datasets | Gharehchopogh
(CNNs, U-Net, to learn features and adaptability and computational and Ibrikci (2024)
etc.) segment images resources
Hybrid Fuzzy C-mean Integrates genetic Improves Complex and Jiang et al. (2021)
approaches | (FCM) + genetic algorithms with FCM | clustering computationally
algorithm for optimization precision and intensive
reliability
FCM-+particle Combines FCM Enhances Can be complex to Dhruv et al.
swarm with PSO to refine clustering implement (2023)
optimization clustering results performance and
(PSO) accuracy
FCM+gray wolf Uses the gray wolf Balances Requires careful Farshi et al.
optimization algorithm to optimize | exploration and parameter tuning (2020)
FCM clustering exploitation
FCM+modified Combines FCM Enhances May require extensive | Gharehchopogh
bat algorithm with the modified convergence speed | parameter adjustments | and Ibrikci (2024)
bat algorithm and accuracy
for improved
segmentation
FCM+modified Further explores FCM | Shows Similar to previous Emam et al.
bat algorithm with the modified bat | effectiveness hybrids; might need (2023)
(alternate study) algorithm across different parameter tuning
scenarios
Ensemble Combines multiple Leverages the Can be complex to Biju and Mythili
approaches segmentation strengths of implement and manage | (2012)
techniques to improve | diverse methods
performance

capabilities. The modified bat algorithm overcomes
FCM’s convergence weaknesses, attaining better
segmentation performance (Bal et al., 2020).

Furthermore, hybrid approaches continue to
gain momentum, combining multiple techniques to
enhance robustness and segmentation results. These

47


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/1J0S1.202510_9(5).0004

R. Ch, K. Dasari, etc./Int. J. Systematic Innovation, 9(5), 43-55 (2025)

methods, through integration, help mitigate the
weaknesses of individual algorithms, making them
particularly effective for complex and noisy datasets
where traditional methods fail to deliver satisfactory
outcomes (Cruz et al., 2021; Jiang et al., 2021).

2.2. Progress on Hybrid Image Segmentation
Methods

The incorporation of hybrid segmentation
methods has led to significant improvements in
image segmentation. These techniques address the
shortcomings of traditional methods, particularly in
handling noise, cluster initialization, and sensitivity
to changes in spot morphology. Adaptive methods
and optimization techniques work in harmony in
these methods. Continued research in this area will
drive further innovation and refinement that deal with
intricate datasets, expanding the potential for image
segmentation in both biomedical and agricultural
research (Dhruv et al.,, 2023; Gharehchopogh and
Ibrikei, 2024). Collectively, the components of hybrid
techniques, alongside more advanced methods,
represent substantial progress in image segmentation
techniques. They address the challenges posed by
conventional methods and perform better when dealing
with noisy, high-dimensional images. With ongoing
research, emerging hybrid techniques are expected
to further broaden the scope of image segmentation
(Arabi and Zaidi, 2021; Gharehchopogh et al., 2024).

3. Proposed Methodology

In the proposed hybrid framework, BEMD and
GA contribute distinctly to the overall methodology
by addressing specific challenges in microarray
image segmentation. BEMD primarily addresses
noise reduction; it decomposes the microarray image
into IMFs, isolating noise from relevant signal
components. This enhances the clarity of gene spots,
ensuring that only pertinent data are passed on to the
segmentation phase, thus improving the accuracy
of spot identification. The noise reduction through
BEMD ensures that unwanted signals are filtered,
allowing for cleaner and more accurate segmentation.
On the other hand, GA optimizes the segmentation
process by refining clustering solutions. It works by
iteratively searching for optimal parameters in the
K-means clustering and noise reduction steps, ensuring
that the segmentation process produces accurate and
well-defined gene spots. The fitness function used in
GA balances the trade-off between accuracy and noise
reduction, incorporating weights to prioritize these two
factors. By combining BEMD for noise elimination
with GA for optimal solution searching, the hybrid
framework efficiently addresses the complexity of
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microarray images, improving segmentation accuracy
and processing efficiency. Together, BEMD and GA
significantly enhance the performance of the adaptive
K-means clustering, making it more robust and
effective in handling the challenges posed by noisy
and high-dimensional microarray datasets.

3.1. Noise Reduction

The presence of noise in microarray images can
significantly impede precise gene spot identification.
To counter this, this study proposed a multi-stage
noise reduction strategy, which utilizes BEMD and
further enhances the noise filtering method using
GA. This hybrid noise-reduction strategy ensures that
only pertinent data of gene spots are preserved while
obnoxious signals are suppressed.

3.2. Adaptive K-means Clustering

As with all traditional K-means -clustering
methods, the number of K clusters must be specified
in advance, which poses a limitation when working
with variable datasets such as microarray images. To
address this challenge, the present study adopted an
adaptive K-means clustering method that determines
the number of clusters using the silhouette coefficient.
The silhouette score, S(i), is defined as:

S =D =ald)

=7 7 1
max(a(i), b(i)) W

Input the microarray
image

|

Find Extrema (Maxima/Minima)

L

Get Mean Envelope & Subtract

|

Residual Signal = Noise

Fig. 4. Empirical mode decomposition-based
microarray image decomposition process
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Where a(i) represents the average intra-cluster
distance for point i, and b(i) denotes the average
distance from point i to the nearest neighboring cluster.

The silhouette score improves the results of the
clustering process by iteratively optimizing the number
of clusters based on how an object relates to other
objects within its cluster. Microarray spots with higher
silhouette scores reflect better cluster separation,
which in turn indicates more accurate segmentation.

3.3. BEMD

The BEMD noise reduction method involves
decomposing a microarray image into IMFs.
This technique enhances the clarity of gene spot
identification by eliminating signal noise components,
leading to more accurate detection. The decomposition
can be represented mathematically as:

F(x,y) =2;IMF(x,y)+r(x,y) (2)

Where f(x,y) is the original microarray image,
IMF (x,y) represents the i-th IMF, and r(x,y) is the
residual signal after decomposition.

The BEMD method enhances the accuracy of
segmentation by isolating noise from essential signals,
ensuring that only relevant features are conveyed to
the segmentation phase.

Fig. 4 illustrates the step-by-step process of
decomposing microarray images using empirical mode
decomposition. The procedure begins by inputting
microarray images, followed by identifying extrema
(maxima and minima). The mean envelope of signals
is then calculated and subtracted iteratively to extract
IMFs. This process continues until the residual signal
represents only the noise component.

3.4. GA for Noise Reduction

To further enhance segmentation, GA was chosen
due to its effectiveness in refining optimal solutions
within vast complex spaces. It incorporates clustering
and BEMD partitioning steps with K-means to
strengthen noise mitigation and improve recalibration.
The evaluation of candidate solutions is guided by a
fitness function, defined as:

Fitness = w, x Accuracy + w, x (1-Noise level)  (3)

Where w, and w, are weights representing
the importance of accuracy and noise reduction,
respectively. Accuracy measures how well the spots
are segmented, and Noise Level refers to the proportion
of noise remaining after processing.

The fitness function balances the trade-off
between accuracy and noise reduction, ensuring that

the segmented gene spots are both well-defined and
free from unwanted noise.

3.5. Bat Algorithm for Clustering Optimization

To further improve segmentation, we added the
bat algorithm, which is a nature-inspired metaheuristic
optimization technique. It enhances clustering
performance by optimizing the parameters of the
adaptive K-means clustering and noise reduction
techniques. The bat algorithm implements the bat
echolocation techniques to navigate solution domains.
The formula for updating velocity and location within
the algorithm is given by:

v =y (xl = x) f, @

i

X =+ () ®)

Fig. 5. Hybrid microarray image segmentation
framework

Table 2. Clustering method performance

Clustering method | Accuracy (%) | Silhouette score
Traditional K-means 85 0.45
Adaptive K-means 95 0.75
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where V! is the velocity of the i-th bat at time ¢,
x; is the current position, f;is the frequency parameter,
and x, represents the global optimal position.

3.6. Hybrid Approach

The proposed hybrid approach utilizes adaptive
K-means clustering for dynamic segmentation of gene
spots and combines BEMD and GA for optimizing
segmentation parameters (Fig. 5). Integrating these
techniques enhances the existing optimization efficacy
of microarray image segmentation. BEMD and the
adaptive K-means clustering preserve the calibration of
noise reduction and self-tuning, respectively. Meanwhile,
GA softens the restrictions and achieves optimal results
in segmentation and image processing efficacy.

4. Results

The proposed framework was executed in
Python, employing appropriate libraries to enhance
its implementation. Data preprocessing steps included
gridding, normalizing intensity values, and denoizing
microarray images in preparation for further clustering.
Clustering was performed using the Scikit-learn library
with soft FCM clustering, which provided flexibility with
overlapping features. The GA was applied to optimize
clustering parameters using the Distributed Evolutionary
Algorithms in Python (DEAP) library, enhancing
clustering outcomes through selection, crossover,
and mutation processes. Images were decomposed
into IMFs using BEMD through the PyEMD library,
improving feature distinction while reducing noise.
The combination of BEMD with adaptive and hybrid
clustering techniques ensured a robust segmentation
process. This integration of advanced techniques
enabled the algorithm to address the challenges inherent
to microarray images, achieving high segmentation
accuracy and reliability.

4.1. Segmentation Accuracy

Our proposed adaptive and hybrid framework showed
a significant improvement in segmentation accuracy
compared to prior approaches (Table 2). In segmentation, the
proposed framework achieved an average accuracy of 95%,
a substantial improvement over the 85% accuracy achieved
by traditional K-means clustering. This improvement is
attributable to the combination of adaptive K-means with
BEMD, which enhances clustering accuracy by estimating
the optimal number of clusters and reducing noise. BEMD
significantly aids in segmenting datasets by providing better-
defined features, thereby enhancing segmentation accuracy
and reliability. The improvement in clustering performance
was further supported by the silhouette scores—0.75 for the
adaptive K-means method compared to 0.45 for traditional
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Fig. 6. Cluster analysis using the adaptive K-means
approach. Green points indicate data samples
assigned to clusters, while purple stars denote the
cluster centroids identified by the algorithm. The
improved separation between clusters demonstrates
the effectiveness of the adaptive method compared to
traditional K-means
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Fig. 7. Noise reduction comparison (A) before and
(B) after applying bi-dimensional empirical mode
decomposition

Table 3. Noise reduction metrics

Metric Before | After | Improvement
BEMD | BEMD (%)

Noise level (%) 25 5 80

Signal-to-noise 10 30 200

ratio (dB)

Abbreviation: BEMD: Bi-dimensional empirical mode

decomposition.

K-means (Fig. 6). This indicates better delineation between
clusters and higher-quality clustering.

4.2. Noise Reduction

Combining BEMD with GA significantly
improved noise suppression (Table 3). Microarray
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Table 4. Comparison among hybrid clustering models

Method Accuracy | Noise reduction | Execution | References
(%) (%) time (s)

Proposed hybrid algorithm 95 80 1.2 This study
Hybrid FCM+GA 90 70 1.5 Biju and Mythili (2012)
Hybrid FCM+PSO 92 75 1.8 Lang et al. (2023)
FCM+GWO 93 78 2.0 Maryam et al. (2022)
FCM+modified bat algorithm 91 72 1.7 Lee et al. (2021)
Abbreviations: FCM: Fuzzy C-means; GA: Genetic algorithm; GWO: Gray wolf optimization; PSO: Particle swarm optimization.

images were initially recorded with a noise level of
25%. After applying BEMD, the noise level decreased
to 5%, an 80% reduction. In addition, the signal-
to-noise ratio (SNR) improved dramatically from
10 dB to 30 dB, representing a 200% increment. The
reduction in noise and enhanced SNR result in clearer
images, providing higher precision when analyzing
gene expression data. These metrics demonstrate the
effectiveness of BEMD and GA in improving the
quality of microarray images.

Fig. 7 compares microarray images before and
after the application of BEMD. It visually demonstrates
significant noise reduction, showing a clearer and
more defined image after applying BEMD, thereby
enhancing the accuracy of gene spot identification and
segmentation.

4.3. Execution Time

Adding image processing to our proposed hybrid
framework enhanced the efficiency. The average time
for processing a single microarray image was 1.2 s.
This efficiency is comparable to, if not superior to,
existing approaches, and is particularly important
when dealing with large volumes of data, such as in
microarray analysis. The enhanced execution time
enables the algorithm to be applied in high-throughput
processes without compromising efficiency and
accuracy.

4.4. Comparison with Traditional Methods

Traditional methods, such as region-based
and threshold-based segmentation methods,
are often sensitive to noise and struggle with
the wvariability in spot morphology, leading to
inaccuracies in gene expression data analysis. Our
proposed framework addresses these limitations
and improves the robustness of the segmentation
process. For example, region-based segmentation
has been widely used in similar applications
but significantly suffers from noisy conditions,
resulting in poor performance (Biju and Mythili,
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2012; Gharehchopogh et al., 2024). Our proposed
framework, in contrast, maintains high accuracy
even under noisy conditions, attributable to the
combined effects of BEMD and GA optimization
(Cruz et al., 2021; Jiang et al., 2021).

4.5. Comparison with Other Recent Hybrid
Clustering Models

Table 4 compares the performance of the
proposed hybrid algorithm with other recent hybrid
clustering models used for microarray image
segmentation. Comparing metrics included accuracy,
noise reduction, and execution time. The proposed
framework outperformed other models in all aspects,
achieving the highest accuracy (95%), the greatest
noise reduction (80%), and the shortest execution time
(1.2 s). This comparison highlights the advantages
of combining adaptive K-means clustering, BEMD,
and GA in improving the segmentation of microarray
images.

4.6. Applications in Medical and Agricultural
Research

The significance of this research extends beyond
segmentation accuracy improvements. In medical
science, microarray image segmentation is vital
for gene expression profiling, particularly in cancer
diagnostics, where minor changes in gene expression
can drastically affect diagnostic and therapeutic
approaches (Farshi et al., 2020; Gharehchopogh and
Ibrikei, 2024). Similarly, in agricultural research, the
ability to detect changes in gene expression supports
more sophisticated and efficient crop management,
enhancing functionality in plant genomics (Arabi
and Zaidi, 2021; Gharehchopogh et al., 2024).
Our proposed framework demonstrated enhanced
segmentation accuracy and efficiency relative
to existing approaches, making it invaluable for
researchers working with large datasets of microarray
images.
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5. Conclusion

In this work, we proposed a novel hybrid clustering
algorithm that combines adaptive K-means with BEMD
and GA to address the limitations of traditional microarray
image segmentation methods. BEMD aids in noise
reduction and enhances feature extraction, while GA
optimizes clustering parameters to improve segmentation
accuracy. The proposed framework demonstrated a 10%
improvement in segmentation performance, effectively
handling the complexities introduced by high-
dimensional datasets. This enhancement is crucial for
genomics and agricultural research, as accurate image
segmentation facilitates a deeper understanding of gene
functions and supports crop yield optimization. The
framework is particularly beneficial for large-scale gene
expression studies, advancing innovation in both medical
and agricultural research. Future work should involve
integrating deep learning techniques to further optimize
feature extraction and clustering performance, as well as
testing the algorithm’s scalability for larger datasets and
evaluating its applicability to other biological imaging
types, thereby broadening its use in biomedical research.
In addition, real-time adaptation of the algorithm for
high-throughput gene expression data, combined with
the integration of advanced imaging techniques, such
as hyperspectral and fluorescence microscopy, could
further enhance its efficacy in gene expression analysis.
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