
DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

75

Handwriting match and AI content detection

Hrishikesh Panigrahi, Siddhanth Naidu, Ambuj Pandey, Phiroj Shaikh*, Amiya Kumar Tripathy

Department of Computer Engineering, Don Bosco Institute of Technology, Mumbai, India

*Corresponding author E-mail: phiroj@dbit.in

(Received 22 November 2024; Final version received 12 February 2025; Accepted 09 April 2025)

Abstract

Machine-generated text presents a potential threat not only to the public sphere but also to education, where the
authenticity of genuine students is compromised by the presence of convincing, synthetic text. There are also
concerns about the spread of academic misconduct, particularly direct replication among students. In response to
these challenges, this paper introduces the Handwriting Match and Artificial Intelligence (AI) Content Detection
System (HMAC). HMAC utilizes optical character recognition (OCR) mechanisms to convert handwritten and typed
content from a single-page portable document format into machine-readable text, thus enabling further analysis.
Drawing on recent advances in natural language understanding, HMAC aims to preserve the educational value of
assignments by effectively detecting AI-generated content. In addition, HMAC has a strong plagiarism detection
system that uses a comparative analysis of student submissions in a particular academic field. This paper describes
HMAC’s architecture, methodology, and results, emphasizing its key contributions: improved handwritten content
extraction with OCR and improved identification of AI-generated content. The study addresses the research question
of how HMAC improves the identification of AI-generated content and supports academic integrity compared to
other methodologies.

Keywords: Academic Assessment, Artificial Intelligence Content Detection, Document Analysis, Similarity Detection,
Transformer-Based Models

1. Introduction

A new era of convenience and accessibility has
been brought about by the widespread deployment
of generative models, as demonstrated by ChatGPT,
which has completely changed the landscape of
academic assignments in recent years. However,
there have been challenges along the way with this
evolution, including a concerning trend of students
using artificial intelligence (AI)-generated content
directly in their assignments because of the ease of
accessing such tools in obtaining the content required
for the assignments. When students choose easily
accessible generative content above the learning
process, assignments lose their inherent value, which
is a danger to the educational process.

In response to this critical issue, our research
introduces the Handwriting Match and AI Content
Detection System (HMAC) as a robust and multifaceted
solution. HMAC is meticulously designed to recognize
and address the inappropriate incorporation of

AI-generated content in student assignments, particularly
those submitted in handwritten or typed form, often in
Portable Document Format (PDF) Romero et al. (2012).
By leveraging transformer-based models fine-tuned on
the GPT-wiki-intro dataset, HMAC employs state-of-
the-art technology to discern the nuanced differences
between human-generated and AI-generated content.

As AI systems become increasingly integrated
into our daily lives, understanding the factors
influencing their acceptance and interaction becomes
paramount. Pelau et al. (2021) explored the intricate
dynamics of human-AI interaction, examining the
roles of interaction quality, empathy, and perceived
anthropomorphic characteristics in shaping the
acceptance of AI within the service industry. Daniel
et al. (2019) delved into the delicate balance between
AI and human behavior, emphasizing the need to
comprehend and prevent potential harm that may
arise from AI systems acting like humans. Uzun
(2023) investigated academic integrity concerns
related to ChatGPT, shedding light on methodologies

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

76

for detecting AI-generated content in educational
settings. In addition, Sadasivan et al. (2023) probed the
reliability of detecting AI-generated text, questioning
the effectiveness of existing methodologies.

In the field of language understanding, the
advent of Bidirectional Encoder Representations from
Transformers (BERT) marked a significant paradigm
shift. Kenton and Toutanova (2019) introduced
BERT as a pre-training model for deep bidirectional
transformers, showcasing its prowess in language
understanding. These endeavors collectively constitute
the backdrop against which we explore the evolving
landscape of AI and its intricate intersections with
human dynamics.

Beyond content identification, HMAC’s primary
objective is to retain and impart the educational value
that comes with academic assignments. HMAC
positions generative models as supplemental tools,
encouraging students to participate in the learning
process before incorporating AI-generated content,
as opposed to using it as a quick fix. This paradigm
change fosters a deeper comprehension of the subject
matter, which is essential for the holistic development
of students.

At its core, HMAC employs an optical character
recognition (OCR) mechanism to convert both
handwritten and typed content into machine-readable
text. This process involves several steps, including
word detection through platforms such as Roboflow, an
ordering algorithm to arrange words into coherent lines,
and integration with OCR models such as Microsoft’s
transformer-based OCR (trocr)-base-handwritten, for
precise word recognition and sentence formation. The
system simultaneously applies an AI content recognition
model to the OCR-processed text, revealing information
about the proportions of AI and human content. The
second aspect of our investigation delves into the
world of OCR, a technology critical to deciphering and
extracting information from visual data. Wu et al. (1997)
laid a foundational groundwork for text extraction from
images, a critical step in the OCR process. Subsequently,
Li and Doermann (1998) pioneered automatic text
tracking in digital videos, propelling OCR capabilities
into dynamic visual contexts. Kim (1999) introduced
local color quantization for automatic text location in
complex color images, advancing OCR techniques
in handling intricate visual scenarios. Jain and Yu
(1998) further expanded OCR capabilities into images
and video frames, contributing to the development of
comprehensive OCR methodologies.

One of HMAC’s unique features is its integration
of a plagiarism check, which involves comparing
uploaded assignments to a database of assignments
related to the same subject. By taking a comprehensive
approach, instances of academic dishonesty among
students are reported, and AI-generated content is

identified. The system generates detailed reports for
users, including percentages of AI-generated content
and plagiarism detection results.

HMAC provides a complete and proactive
solution that essentially guards against the improper
application of generative models in educational
settings. Assignments are meant to be instructive.
This platform provides educators with the resources
they need to keep a strict evaluation environment in
place. Examining the design, process, and outcomes
of HMAC, this work offers a viable answer to the
changing problems associated with academic integrity
in the digital era of research.

In this work, we address the following research
question: (i) How does HMAC significantly improve
the detection of AI-generated work, especially in terms
of academic integrity, compared to current approaches?
(ii) How does the OCR aspect of our technology
enhance the process of extracting and interpreting
handwritten text from photographs, especially for
assignments and academic documents?

2. Related Work
Several recent studies have focused on detecting

and analyzing AI-generated content, particularly in
terms of academic integrity and the responsible use
of AI. Rodriguez et al. (2022) investigated the cross-
domain detection of GPT-2-generated technical text,
shedding light on the challenges and implications of
identifying machine-generated content across different
domains. Mitrović et al. (2023) explored decision
explanations for machine learning models, specifically
in the context of distinguishing between ChatGPT and
human-generated text, emphasizing the importance of
interpretability in AI-based detection systems.

Addressing academic integrity concerns, Uzun
(2023) conducted an investigation into ChatGPT’s
impact on academic settings, proposing methods for
detecting AI-generated content to preserve academic
integrity. Mindner et al. (2023) delved into the
classification of human- and AI-generated texts,
exploring features for effectively identifying content
generated by models such as ChatGPT.

Wahle et al. (2023) introduced the concept of AI
Usage Cards, aiming to facilitate the responsible reporting
of AI-generated content by providing transparent and
informative details about the AI models involved. In the
realm of evasion strategies, Lu et al. (2024) discussed
the challenges of large language models being guided
to evade AI-generated text detection, highlighting the
need for robust detection mechanisms Jauhiainen et al.
(2016), Lindén et al. (2012).

Several studies have made significant
contributions to the field of OCR, with each focusing
on a different aspect of accuracy, efficiency, and

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

77

post-correction methodologies Lund et al (2013),
Lund et al (2011), Reynaert (2010).

Dong and Smith (2018) proposed a multi-input
attention mechanism for unsupervised OCR correction,
demonstrating its effectiveness in enhancing OCR
accuracy Wick et al. (2018). The similar type work has
been done by Evershed and Fitch (2014), Hämäläinen
and Hengchen (2019), Kauppinen (2016), Koistinen et
al. (2017), Kettunen et al. (2018), Llobet et al. (2010),
Silfverberg et al. (2016), Springmann et al. (2014),
Vobl et al. (2014). Guha et al. (2019) presented Devnet,
an efficient convolutional neural network architecture
for handwritten Devanagari character recognition,
contributing to the advancement of OCR techniques
for specific script recognition. The effective use of the
neural networks in such areas has been done by Graves
et al. (2006) and Srivastava (2014).

Kettunen and Koistinen (2019) explored the
utilization of the open-source OCR engine Tesseract
for re-OCR of Finnish Fraktur, providing insights
into quality improvement strategies. Li et al. (2021)
introduced TrOCR, a transformer-based OCR model
with pre-trained models, showcasing the potential of
transformer architectures in OCR tasks.

Sabu and Das (2018) conference paper, “A
Survey on Various Optical Character Recognition
Techniques,” was presented at the Conference on
Emerging Devices and Smart Systems 2018 in India.
This manuscript sheds light on various OCR methods
and provides useful insights into their applications.
It also recommends future research avenues into
advanced OCR techniques and their potential
applications in document analysis.

3. Related Work
3.1. Design

The HMAC proposed requires users to input
their assignments in PDF format through a specific
web interface. The system then uses an OCR process
to convert typed or written text into machine-readable
text. To provide users with visibility into both human
and AI content percentages, the system simultaneously
runs the OCR-processed text through an AI content
detection model to ascertain the likelihood that the
material was generated by AI. By comparing the
submitted work with a database of assignments in the
same subject, HMAC also includes a plagiarism check
feature. The system then generates a thorough report for
users, including the percentage of material generated
by AI and the findings of any plagiarism detection.

3.2. Architecture
A single-page PDF document is first fed into the

process and transformed into machine-readable text.

To find duplicate material and establish whether the
content is AI generated, this text is processed and put
through match detection and AI content detection. The
processed file is kept in a database together with its
metadata and analysis findings. The system verifies
that each file has been examined and compared. If
not, a different file is retrieved from the database for
processing. The final comparison findings and AI
content detection results are displayed after all files
have been analyzed.

The architecture depicted in Fig. 1 ensures a
comprehensive and systematic approach to content
analysis in PDF files. It seamlessly integrates PDF-to-
text conversion, match detection, AI content detection,
and database management, offering a robust solution
for identifying duplicate and AI-generated content
while maintaining the integrity of the analyzed
material.

3.3. Method of Data Collection
A thorough literature search was conducted to

identify relevant research articles on AI-generated
content detection techniques. Databases such as IEEE
Xplore, ACM Digital Library, arXiv, and Google
Scholar were searched using relevant keywords,
such as “Generative Models Analysis,” “AI Content
Detection,” and “Optical Character Recognition
(OCR).” Following our literature search, we carried
out a two-step quality assessment process. In the first
step, we screened the identified studies for relevance
to the scope of our study. Manuscripts that did not
directly address the topic or were unrelated to our
HMAC project were not further considered.

Then, we rigorously evaluated their scientific
quality. This evaluation included an assessment of
each manuscript’s methodology, including the research
design, data collection techniques, and experimental
setup. The articles were chosen based on their relevance
to the topic and contribution to the existing body of
knowledge in the field. Only peer-reviewed articles
and conference papers were considered for the review.
Duplicate articles, non-English articles, and articles
irrelevant to the scope of HMAC were excluded.

4. OCR in Handwriting Match and AI Content
Detection System

OCR is a critical stage in the complex framework
of HMAC. OCR is the cornerstone in our effort to
convert complex handwritten characters into text
that can be read by a computer when integrating
handwritten assignments into our system. Handwritten
text has intricacies that must be extracted, processed,
and understood. This intricate process is broken down
into multiple steps, each with a distinct objective.

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

78

The first step is converting handwritten assignments
in PDF format into image files. This conversion creates
the foundation for further OCR processes using the
pdf2image library. Then, using Roboflow, the system
explores word detection, exposing the minute nuances
of each word in the handwritten document. The
challenges posed by variations in handwriting styles
and irregular word sequencing are addressed using
an innovative algorithm called the Word Sequencing
Algorithm, ensuring accurate and ordered detection.
Once the words are identified and ordered, the system
uses OCR models, with a focus on Microsoft’s trocr-
base handwritten model. This specialized OCR model
excels at recognizing and transcribing each word in
handwritten content, bridging the analog and digital
dimensions of education. The stages are outlined below
and explained in detail.

The flowchart in Fig. 2 depicts the step-by-step
process used in the OCR system.

4.1. Document Image Generation

The first step of the proposed software is to
process a single-page PDF input in real-time. After
uploading the PDF, the backend code quickly converts
it to a JPG image using the pdf2image Python library.
This library requires an external utility called Poppler
to render PDFs. It is worth noting that while Poppler
is commonly found on Linux systems, it may require
additional steps to install on Windows. After saving
the image, the system seamlessly proceeds to the next
stage: semantic segmentation with Roboflow.

4.2. Semantic Segmentation with Roboflow

Following the successful conversion of the PDF
to an image, the Word Detection stage focuses on
precisely detecting each word within the converted
image. For this task, we used Roboflow. Roboflow

Fig. 1. Handwriting Match and Artificial Intelligence Content Detection System Architecture
Abbreviations: AI: Artificial intelligence; DB: Database; ML: Machine learning;

OCR: Optical character recognition; PDF: Portable document format.

Fig. 2. Overview of the optical character recognition workflow

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

79

is the preferred option due to its tailored capabilities
for detecting words in handwritten documents. The
platform’s robust capabilities are used to identify each
word in the handwritten document.

The Roboflow model’s results are stored in an
array called “box_dimension,” with each element
representing the properties of a detected word: “x”
for the x coordinate, “y” for the y coordinate, “width”
for the word’s width, and “height” for its height.
Simultaneously, another array is created to hold the
images for each detected word. These images are
created using the data stored in the “box_dimension”
array, with each property facilitating the extraction of
a specific portion of the image. Each extracted word
image is then saved to a designated folder.
For instance, the “box_dimensions” array looks like
this.
[{‘index’: 1, ‘x’: 602, ‘y’: 360, ‘width’: 102, ‘height’: 39},
{ ‘index’: 2, ‘x’: 33, ‘y’: 144, ‘width’: 86, ‘height’: 35},
{ ‘index’: 3, ‘x’: 691, ‘y’: 706, ‘width’: 79, ‘height’: 34},
{ ‘index’: 4, ‘x’: 404, ‘y’: 613, ‘width’: 100, ‘height’: 36},
{ ‘index’: 5, ‘x’: 214, ‘y’: 707, ‘width’: 89, ‘height’: 28}]

However, a problem arises due to the potential
disorder in the detection order, resulting in a mismatch
between the sequence of words in the original PDF
and the order in which they are detected. Although it
might seem reasonable to sort the “box_dimension”
array first by x values and then by y values, the
second sorting step overrides the first. As a result, a
more sophisticated algorithm is required to ensure
proper word sequencing while preserving the original
content’s integrity.

4.3. Lexical Ordering Algorithm
The ordering algorithm 1 is critical for organizing

the detected words and reconstructing the original
flow of sentences and paragraphs from an unordered
set of word images. This algorithm takes a systematic
approach to grouping words into lines of text based
on their vertical y positions in the document and
then further groups them based on their horizontal x
positions.

This algorithm is intended to arrange words into
lines according to their spatial coordinates, specifically
their vertical y and horizontal x positions within a
given “box_dimensions” list. Initially, the list of word
bounding boxes is sorted by y coordinates to group
words on the same line. The algorithm iterates through
each word, keeping track of which words appear on
the same horizontal line. This is maintained by the
current_line list. The algorithm uses a threshold value
(20 in this case) to determine if a word belongs to the
current line by comparing the y distance of the current
word with the previous word in the current_line. If the
difference in the y distance falls within the threshold,

the word is added to the current_line; otherwise, the
current_line is sorted by x coordinates (left-to-right
order), appended to the lines list, and reset to start a
new line with the current word. This process continues
until all words are processed. Finally, the final current_
line is sorted to the x coordinates and added to the lines
list to ensure the algorithm correctly sequences words
into lines as they appear in the text layout.

This algorithm is crucial for structuring the text,
as it efficiently groups words into lines based on their
vertical positions. It is critical for establishing the
correct word sequence within each line, resulting in a
structured representation of the original content.

4.4. Image Composition Module
The ordering algorithm is critical for organizing

the detected words and reconstructing the original
flow of sentences and paragraphs from an unordered
set of word images. This algorithm takes a systematic
approach to grouping words into lines of text based
on their vertical y positions in the document and then
groups them based on their horizontal x positions.

In the following stage, using the correct word
sequence obtained in the previous step, an OCR
model was used to determine the textual content of

Algorithm 1: Lexical Ordering
1: function WordSequencing (box_dimensions)
2: box_dimensions ← Sorted (box_dimensions,

key=lambda box: (box[“y”]))
3: lines ← []
4: current_line ← [box_dimensions[0]]
5: threshold← 20
6:
7: for i in range (1, len (box_dimensions)) do
8: if box_dimensions[i][”y”]−current_line[−1][”y”]

< threshold then
9: ▷ Add the word to the current line if it is on

the same line
10: Append (current_line, box_dimensions[i])
11: else ▷ Sort the current line by x-value and add

it to the lines list
12: current_line← Sorted (current_line,

key=lambda box: (box[”x”]))
13: Extend (lines, current line)
14: current_line ← [box_dimensions[i]] ▷

Reset the current line to the current word
15: end if
16: end for
17:
18: ▷ Sort the last line by x-value and add it to the
lines list
19: current_line←Sorted (current_line, key=lambda

box: (box[”x”]))
20: Extend (lines, current_line)
21: return lines
22: end function

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

80

each detected word. The traditional method involves
processing each word individually through the OCR
model, resulting in corresponding text outputs.
However, this method can be time-consuming,
particularly in cases where the document contains a
large number of words.

To address this issue, the proposed software uses
a strategic technique known as image concatenation.
Image concatenation is the process of combining two
or more images to create a single composite image.
Rather than processing each word individually, the
software combines 10 images into a single line using
concatenation. This concatenated image is then fed
into the OCR model for analysis. By concatenating
multiple images into a single line, the software not
only speeds up the OCR process but also increases
overall efficiency. This technique is especially useful
when dealing with a large volume of text, resulting in
a more streamlined and resource-efficient workflow.

One notable challenge in implementing the
image concatenation technique is the potential lack of
discernible padding between two concatenated images.
OCR models may find it challenging to recognize and
distinguish individual words inside the combined
image due to the absence of spacing. A calculated
approach is used to solve this problem: putting white
space between two concatenated photos. White
padding improves the accuracy of OCR. This ensures
that the OCR process can effectively interpret each
word in the concatenated line, allowing these words
to be seamlessly combined into a coherent sentence.

4.5. Deep Learning Model Inference
Following the concatenation of lines, each

composite line is processed using Microsoft’s trocr-
base handwritten model. This OCR model is designed
specifically for the recognition of handwritten text,
using advanced deep-learning techniques to ensure
precise identification and transcription of each word
in the handwritten content. The model’s emphasis on
handwritten text recognition makes it an appropriate
choice for accurately interpreting the complexities of
handwritten assignments.

4.5.1. Model architecture
The TrOCR model is architecturally designed

around the transformer framework, which includes
both an image transformer and a text transformer.
The dual-transformer architecture depicted in Fig. 3 is
fundamental to TrOCR’s ability to accurately extract
visual features from images and perform language
modeling for OCR (Li et al., 2021).

The transformer architecture is implemented in a
standard encoder-decoder configuration within TrOCR.

The encoder component is specifically engineered to
capture representations of image patches, leveraging the
visual information inherent in the input. The decoder, on
the other hand, is responsible for generating a workpiece
sequence, guided not only by the visual features extracted
from the image but also by the predictions made in
the preceding steps. TrOCR utilizes the conventional
transformer encoder-decoder structure, which
emphasizes its adaptability and effectiveness in dealing
with both image-based and language-related tasks. This
architectural choice highlights the transformer model’s
versatility, allowing it to seamlessly integrate image
processing and language generation components within
a unified framework. The above diagram presents the
architectural design of the model.
•	 Encoder: The encoder part processes the input

image and extracts high-level features that
represent the content of the image. In the context
of OCR, this could involve understanding the
shapes and patterns of characters.

•	 Decoder: The decoder part interprets the features
generated by the encoder and produces the final
output, which is the recognized text. The decoder
considers the context of characters and their
relationships to improve accuracy. The decoder
uses self-attention masking to prevent gaining
more information during training than prediction.
The attention mask ensures that the output for
position i only considers the previous output
and input for positions less than i (Li et al., 2021).

hi = Proj(Emb(Tokeni)) (1)

()
()1

e 1 , 2,.....,
e

σ
=

= =
∑

ij

ik

h

ij v h
k

h for j V (2)

A linear layer projects the decoder’s hidden
states from the model dimension to the dimension
of the vocabulary size V, and the softmax function
calculates the probabilities over that vocabulary. We
used beam search to obtain the final result.

5. AI Text Detection
5.1. Dataset

Rapid advancements in large language models
such as GPT have brought enormous potential and
unexpected challenges. One such challenge is the
widespread use of GPT-generated text, which raises
questions about its authenticity and potential for
misuse. To meet this critical need, a dataset was used
specifically for detecting text generated by GPT (Bhat,
2023). Table 1 provides a detailed breakdown of the
dataset’s columns, which include identifiers, Wikipedia
URLs, titles, Wikipedia introduction paragraphs, and
corresponding content generated by the GPT (Curie). It

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

81

also includes length metrics and token counts for titles,
Wikipedia introductions, generated introductions,
prompts, and the text that follows the prompt, providing
a comprehensive overview of the dataset structure.

5.1.1. Feature engineering
To optimize model performance and focus on

the most salient features, we applied a strategic feature
engineering process. This involved carefully selecting
the following essential features:
(i) ID: A unique identifier assigned to each text

introduction, enabling efficient data management
and tracking

(ii) Text: The raw text content of the introduction,
serves as the primary input for the GPT-detection
model

(iii) Label: A binary classification label, explicitly
indicating whether the text was generated by a
human (0) or GPT (1). This label serves as the
ground truth for model training and evaluation.

After modification, the dataset structure has
been simplified for specific analysis. The “ID” column
now displays the identifier in string format, while
the “text” column combines data from both “wiki_
intro” and “generated_intro.” The “Label” column,
which is important for classification, is introduced,
with 0 representing human-generated content and 1
representing AI-generated content. Table 2 displays
the results of feature engineering applied to the dataset,
which resulted in a consolidated “Text” column by
combining content from “wiki_intro” and “generated_
intro.” The “Label” column represents the classification
label, with “0” indicating human-generated content
and “1” indicating AI-generated content. These
engineered features form the foundation for training
and evaluating classification models that distinguish
between human-generated and AI-generated text.

5.2. Model
The selection of an appropriate model was

critical for the AI text detection process. Transformer-
based models, particularly DistilBERT (Bidirectional
Encoder Representations from Transformers), well-
known for their ability to understand natural language,
were evaluated and chosen for their adaptability to the
task at hand. The chosen model was then meticulously
trained using the annotated dataset. The dataset was
divided into training, validation, and test sets, and
the model’s performance was optimized based on
continuous evaluation and validation results (Sanh
et al., 2019).

To determine whether the input text was created
by AI or by humans, the AI text detection model
generates a probabilistic evaluation. The possibility

Fig. 3. Architecture of the transformer-based optical character recognition model

Table 1. Summary of dataset columns and their
descriptions

Column Data
type

Description

Id int64 ID
url string Wikipedia URL
title string Title
wiki_intro string Introduction paragraph

from Wikipedia
generated_intro string Introduction generated

by GPT (Curie) model
title_len int64 Number of words in

title
wiki_intro_len int64 Number of words in

wiki_intro
generated_intro_len int64 Number of words in

generated_intro
prompt string Prompt used to

generate intro
generated_text string Text continued after the

prompt
prompt_tokens int64 Number of tokens in

the prompt
generated_text_
tokens

int64 Number of tokens in
generated text

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

82

that the text was produced by AI is represented by one
percentage, whereas the likelihood that it was authored
by humans is represented by another.

5.2.1. Model architecture
The architecture of the DistilBERT model, a

condensed form of BERT, for AI text identification, is
displayed in Fig. 4. It begins with an input layer that
handles text sequences up to a certain maximum length
(512 tokens, for example). The pre-trained DistilBERT
model receives these text sequences as input after they
have been transformed into token embedding.

The pre-trained model (DistilBERT) acts as the
core component, which uses its bidirectional attention
mechanism to comprehend contextual relationships in
the input text. DistilBERT is effective for tasks such
as text classification as it minimizes the number of
parameters while maintaining the majority of BERT’s
representational capacity. After passing through the
pre-trained model, the text representations are routed
to a fine-tuned layer. This layer represents the specific
modifications and task-specific training that were
applied to the pre-trained model to help it adapt to the
AI text detection task. The fine-tuned model’s output
is passed through a linear layer pre-classifier, reducing
dimensionality and preparing the data for further
processing. The representations are fed into a fully
connected layer, which maps the features to the final
classification task. The final stage is the topic tagging
layer, which does the classification. It generates
probabilistic scores that indicate whether the input text
is human-generated (class 0) or AI-generated (class 1).
These probabilities provide interpretable information
about the text’s likely source.

In short, during the forward pass, the input IDs
and attention mask are processed by the pre-trained
DistilBERT layer, resulting in a series of hidden states.
These hidden states are sent through a fine-tuned layer,
a linear pre-classifier, and fully connected layers. The
final output layer creates a two-dimensional vector that
represents the probabilities for both human-generated
and AI-generated text.

6. Similarity

A parallelized comparison methodology has
been used in the test of uploaded assignments for
similarity, a critical component of the HMAC. By
utilizing concurrent futures and a ThreadPoolExecutor,
it effectively compares the contents of an uploaded file
with several entries in the database, saving the findings
for additional examination. A ThreadPoolExecutor
was used to start the parallel processing mechanism.
ThreadPoolExecutor in Python facilitates concurrent
task execution via threads, which is ideal for
independent tasks such as file similarity comparisons.
It optimizes resource use by reusing threads and
scales tasks efficiently by adjusting thread pool
size. Asynchronous execution enables tasks to run
independently, enhancing responsiveness. Compared
to multiprocessing, which uses separate processes
with higher memory overhead, and manual threading,
which requires more complex thread management,
ThreadPoolExecutor offers a simpler, more efficient
solution. It submits tasks in parallel to compare the
content of the uploaded file with each file model in the
list. The comparisons list stores the outcomes for later
review and documentation.

6.1. Stages for Detecting Similarity

For similarity detection, first, HMAC calculates
the TF-IDF for the documents and then uses cosine
similarity to compare the number of similar terms
present in the currently uploaded document to the
documents present in the database.

Table 2. Engineered features for classification
Column Datatype Description
ID int64 ID
Text string Text taken from wiki_intro &

generated_intro
Label int64 0 for human, 1 for AI

Fig. 4. Architecture of the artificial intelligence (AI) text detection model

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

83

6.1.1. Term Frequency-Inverse Document
Frequency (TF-IDF)

TF-IDF is a statistical measure that evaluates
the importance of a term in a document relative to its
occurrence in a collection of documents. The TF-IDF
score for a term t in document d is calculated as
follows:

TF−IDF(t,d,D)

TF–IDF(t, d, D) = TF(t, d) × IDF (t, D) (3)

()

()

,

 . log
. 1

 1 ,

=

 
+ + 

=

IDF t d

Total no of documents incorpus d
No of documents withtermt

Number of termst appears indocument dTF t d
Number of termsindocument d

 (4)
where:
(i) TF (t, d) is the term frequency of term t in

document d
(ii) IDF (t, D) is the inverse document frequency of

term t in the document corpus d.

In HMAC, the TF-IDF matrix is utilized to
represent the importance of each term in the uploaded
assignment and other submissions, forming the basis
for similarity calculations. Below is an excerpt from
the output using a sample set of documents:

(0, 129) 0.1857772922586975
(0, 106) 0.1857772922586975
(0, 99) 0.1857772922586975
(0, 127) 0.1857772922586975
(0, 53) 0.1857772922586975
(0, 119) 0.1857772922586975
(0, 43) 0.1857772922586975
(0, 3) 0.1857772922586975…

In the example above, the line (0, 129)
0.1857772922586975 indicates that in the
first document, the TF-IDF score for the term
represented by the word at index 2 is approximately
0.1857772922586975.
The TF-IDF matrix is presented in a compressed
sparse row format, an efficient representation for
sparse matrices. Each line in the output corresponds
to a non-zero entry in the matrix, with the following
components:
(i) (i, j) value: Represents a non-zero entry in the

matrix
(ii) i: Row index
(iii) j: Column index
(iv) value: TF-IDF score for the term in the document.

6.1.2. Document similarity
Document similarity scores are computed using

the TF-IDF matrix as a base. The matrix’s non-zero
entries show how crucial particular terms are for
differentiating between papers. Comprehending the
TF-IDF score distribution offers valuable perspectives
on the distinct attributes of every document. Document
similarities can be interpreted more nuancedly when
terms with higher TF-IDF scores are identified as
having substantially contributed to the document’s
content.

In the context of HMAC, this metric serves as
a robust indicator of similarity between the uploaded
assignment and other submissions. A high cosine
similarity implies a closer resemblance between the
two documents. The cosine similarity scores are stored
in a list of tuples, where each tuple is structured as
(currentfile_index, db_file_index, similarity_score).
where,
(i) currentfile_index: Refers to the index of the

currently uploaded file
(ii) db_file_index: Refers to the index of a document

stored in the database
(iii) similarity_score: Represents the calculated

similarity between the current file and the
database file.

Each tuple has three fields, with the 0th index
being the currently uploaded document, the first index
being the document present in the database, and the
second index being the similarity score. Below is an
example of this list with two documents present in the
database and uploading a third.

For better visualization, these scores can also be
represented as a similarity matrix, where each cell at
position (currentfile_index, db_file_index) contains
the similarity score. The sample data is presented in
Table 3. [(0, 1, 0.025970408434077174), (0, 2, 1.0),
(1, 2, 0.025970408434077174)].

The diagonal entries are marked as “-” since a
document’s similarity with itself was not computed.
This matrix representation complements the tuple
format, making it easier to identify relationships
between documents.

Table 3. Cosine similarity matrix representing
the similarity scores between the current file and

the database file
Current file/
Database file

File 1 File 2 File 3

File 1 - 0.025970 1.0
File 2 0.025970 - 0.025970
File 3 1.0 0.025970 -

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

84

6.1.3. Parallel comparison
ThreadPoolExecutor in Python facilitates

concurrent task execution through threads, which
is ideal for independent tasks like file similarity
comparisons. It optimizes resource use by reusing
threads and scales tasks efficiently by adjusting thread
pool size. Asynchronous execution enables tasks to run
independently, enhancing responsiveness. Compared
to multiprocessing, which uses separate processes
with higher memory overhead, and manual threading,
which requires more complex thread management,
ThreadPoolExecutor offers a simpler, more efficient
solution. It is particularly advantageous for central
processing unit-bound or I/O-bound tasks, balancing
ease of implementation with performance gains in
Python applications. Choosing ThreadPoolExecutor
depends on task characteristics and integration needs
within existing codebases and libraries. Given below
is the algorithm for file comparison.
Here are the definitions for the variables and terms
used in Algorithm 2:
•	 executor: The ThreadPoolExecutor instance used

to manage concurrent task execution
•	 file_list: A list containing the file models to be

compared against the uploaded file
•	 future_to_filename: A dictionary that maps each

future task to its corresponding file model’s
filename

•	 comparisons: A list to store the comparison
data, including the uploaded file, other files, and
similarity results

•	 file: The current file being processed in the loop
•	 future: Represents a submitted task
•	 filename: Corresponds to a future task
•	 result: The result retrieved from a future task
•	 comparison_data: A dictionary that stores the

comparison data for each file comparison
•	 Exception as e: The exception caught during

error handling

7. Results
7.1. OCR
7.1.1. Document image generation

The primary purpose of this stage was to provide
a standardized format for further analysis and to ensure
uniformity in the subsequent stages of the project. The
input at this stage is a single-page PDF file, as shown
in Fig. 5.

7.1.2. Semantic segmentation with roboflow
This critical phase required the precise

identification of individual words within the

converted document images. This stage was critical
in preparing the data for further processing, ensuring
that the subsequent OCR phase focused on accurately
segmented regions, allowing for more granular and
precise extraction of text content from document
images.

The properties of the segmented images, such
as their x and y coordinates, width, and height, were
systematically stored in the “box_dimensions” array.
This array was critical in maintaining the spatial
information of each word in the document.

For Fig. 5, the following shows its “box_
dimension” array.
[{‘index’: 1, ‘x’: 602, ‘y’: 360, ‘width’: 102, ‘height’: 39},

Algorithm 2. File similarity comparison
1: function InitializeExecutor
2: Create a ThreadPoolExecutor as executor
3: return executor
4: end function
5:
6: function SubmitTasks (executor, file_list,

future_to_filename)
7: for each file in file list do
8: future ← executor.submit (compare_file_

similarity, file[’content’], file[’model’])
9: future_to_filename[future] ← file[’model’]
10: end for
11: end function
12:
13: function ProcessCompletedTasks (futures, future_to_

filename, comparisons)
14: for each future in futures that are completed do
15: filename ← future_to_filename[future]
16: result ← future.result()
17: if result is valid then
18: comparison_data ← {’uploaded file’:uploaded_

file_data, ’other_file’: filname, ’similarity
result’:result}

19: comparisons.append (comparison_data)
20: else
21: Error message for being unable to calculate

similarity
22: end if Exception as e
23: Error message with exception details: e
24: end for
25: end function
26:
27: function Main (uploaded_file_data, file_list)
28: executor ← InitializeExecutor
29: future_to_filename ← {}
30: SubmitTasks (executor, file_list,

future_to_filename)
31: comparisons ← []
32: ProcessCompletedTasks (futures, future_to_

filename, comparisons)
33: Return comparisons
34: end function

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

85

{‘index’: 2, ‘x’: 33, ‘y’: 144, ‘width’: 86, ‘height’: 35},
{‘index’: 3, ‘x’: 691, ‘y’: 706, ‘width’: 79, ‘height’: 34},
….
{‘index’: 154, ‘x’: 559, ‘y’: 372, ‘width’: 23, ‘height’: 14},
{‘index’: 155, ‘x’: 390, ‘y’: 660, ‘width’: 17, ‘height’: 14},
{‘index’: 156, ‘x’: 608, ‘y’: 747, ‘width’: 15, ‘height’: 13}]

The processed words were systematically
organized and saved in a specific folder. Each word
was given a unique title, denoted as “words_Index,”
with the index corresponding to the word’s position in
the “box_dimensions” array. The table 4 depicts one
such example Roboflow model’s output. This indexing
system provided a seamless way to access the associated
images by directly referencing the “box_dimensions”
array.

7.1.3. Lexical ordering algorithm
This stage addressed the challenge of ensuring

the correct sequence of words within the document,
particularly when dealing with unordered or randomly

detected words. The algorithm aimed to arrange the
words in a sequence that accurately reflected the
original order in the document.

After applying this algorithm, the “box_
dimension” array for Fig. 6 is updated as follows:
[{‘index’: 18, ‘x’: 25, ‘y’: 9, ‘width’: 65, ‘height’: 32},
{‘index’: 117, ‘x’: 126, ‘y’: 19, ‘width’: 80, ‘height’: 27},
{‘index’: 74, ‘x’: 223, ‘y’: 7, ‘width’: 74, ‘height’: 37},
...
{‘index’: 78, ‘x’: 52, ‘y’: 793, ‘width’: 113, ‘height’: 35},
{‘index’: 82, ‘x’: 195, ‘y’: 790, ‘width’: 64, ‘height’: 23},
{‘index’: 126, ‘x’: 293, ‘y’: 787, ‘width’: 155, ‘height’: 34}]

The system’s systematic word indexing allows
for quick access to individual words by index number.
For example, if a word is given the index number 10,
it indicates that it is the first word in the corresponding
PDF section. Based on the array after applying the
algorithm to Fig. 5, the ordered words are produced as
depicted in Table 5.

Fig. 5. Document image generation: standardizing input for subsequent stages. This image represents
the outcome of the first stage in the optical character recognition workflow, which focuses on

document image generation

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

86

7.1.4. Image composition module

Rather than processing each word image
individually, this method involved concatenating
groups of 10-word images into a single, continuous
line.

For Fig. 5, this stage produced the following
output (Fig. 7), based on a batch size of 11.

Fig. 6. Semantic segmentation with Roboflow—refined output. This image shows the results of the semantic
segmentation phase using Roboflow

Fig. 7. Image composition module output: optimized
concatenation. This image depicts the output of the

image composition module (Section 7.1.4). It displays
the first 11 words, as the specified batch_size was

11, demonstrating the effectiveness of the optimized
concatenation approach

Table 4. Word detection and indexing results. This table displays the Roboflow model’s output, demonstrating the
detection of words in random order across various images

Image

Title (words_Index) words_1.jpg words_2.jpg words_3.jpg

Table 5. Ordered words extracted after applying the lexical ordering algorithm. This table presents the first three
words extracted in order after applying the lexical ordering algorithm (Section 4.3)

Image

Title (words_Index) words_18.jpg words_117.jpg words_74.jpg

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

87

7.1.5. Deep learning model inference
The image composition module generated

concatenated lines, which were then fed into the OCR
model for recognition and transcription. Using the
transformer’s encoder-decoder structure, the model
successfully converted visual features extracted from
images into a coherent sequence of word pieces, effectively
reconstructing the original handwritten content.

For Fig. 6, the model generates the following
output:

One sunny day, wishes decided to go on ACT
Adventure. They all decided to explore the mysterious
forest at the edge of the town with the SWR. Casting
warm rays. Wishers, the adventurous cat gathered his
friends. Under the Green Canopy of the mysterious
forest, Wishers and his friends ventured forth with
excitement in their hearts. The air was filled with the
sweet scent of blooming flowers, and the rustle of
leaves added a rhythm to their journey. As they delved
deeper into another woodland, they encountered a
balding brook, its crystal clear waters inviting them
to take A refastening pause. wishers, the adventurous
cat, with his sleek fur, approached the water’s edge.
He dipped his POW into the cool stream sending rifles
accrabs its surface Wishers said “Come On, everyone!
Let us follow the path beside the stream. I have A
feeling it will lead the US to something magical, It his
eyes sparkling with anticipation.

7.1.6. Evaluation
To evaluate the results, we used three error

measurements: character error rate (CER), word error
rate (WER), and word recognition accuracy (WRA).
These evaluation metrics is replicating the performance
indices as mentioned in Appendix 1.

The CER, or percentage of erroneous characters
in the system output, is a common metric in OCR
tasks. It can be computed by dividing the number of
incorrect characters by the sum of correct characters
and errors in the system output. Similarly, the WER
represents the percentage of incorrect words in the
system output. It is computed by dividing the number
of incorrect words by the sum of correct words and
system errors.

CER, WER=
Errors

Correct + Errors
 (5)

Similar to WER, WRA measures the accuracy
of whole-word recognition. It is calculated as the ratio
of correctly recognized words to the total number of
words.

WRA=
Correctly recognized words

Total words
 (6)

To determine the number of errors, we first
aligned the ground truth sentence and OCR prediction
lines at the character level (both CER and WER).
We then calculated the overall Levenshtein distance
between the system output and the ground truth,
considering deletions and insertions (Li et al., 2021).

While calculating the CER is relatively simple,
different evaluation systems employ different
alignment approaches when calculating WER. Fig. 8
illustrates one alignment of a misspelled word example.
The alignment is character-level, so the missing letters
“e” and “x” will be paired with the empty string. If this
alignment is used to calculate WER, the word example
will be paired with the entire word exam, resulting in
one error.

7.1.6.1. Handwriting quality assessment
It is important to note that the experiment used the

same type of handwriting for all qualities. For instance,
to maintain consistency in the evaluation, “Good”
handwriting only includes text from one individual.

7.1.6.2. Factors affecting handwriting quality
To assess any handwriting, it is essential to

know the elements that affect handwriting quality.
Every element, from word spacing to writing style,
influences our system’s overall efficacy in a variety of
handwriting attributes. Table 6 presents the factors that
are taken into consideration for handwriting quality.

7.1.6.3. Word-level error analysis
Word-level error analysis is a thorough

examination of our handwriting recognition system’s

Fig. 8. An example of how the number of word errors
varies according to alignment. After aligning the

lines at the character level, aligning them at the word
level results in a word error count of 1 (e.g., the word

example is aligned with t ε ε t, the empty string)
Abbreviation: OCR: Optical character recognition

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

88

performance at the level of individual words. We
evaluated the recognition accuracy of each sample by
comparing the actual text to the system’s output. The
CER and WER were calculated to assess the system’s
ability to correctly identify individual characters
and entire words. In Table 7, the CER and WER
percentages are shown.

7.1.6.4. Line-level error analysis

By evaluating the recognition accuracy of
complete lines of text, line-level error analysis provides
a more comprehensive view than just analyzing
individual words. Each sample’s real lines and those
identified by the system were compared. We evaluated
the whole line recognition accuracy using line CER
and line WER metrics.

An error analysis was performed at the line
level. We examined how many lines were recognized
completely correctly and found that most of the lines
did not have any errors. With an average of over 70%,
every 12 lines were recognized correctly. In the set
of incorrect lines, most contained only minor errors,
typically due to common OCR confusion as described
by Kissos and Dershowitz (2016), Levenshtein, (1966).

7.1.6.5. Evaluation table

In this comprehensive performance evaluation,
we present the results of our HMAC system across
a range of handwriting qualities. We designed a
structured table with important indicators to provide a
more detailed picture of our system’s functioning. The
table includes an analysis of the number of sentences,
handwriting quality (best, good, and worst), total
lines processed, processing time, average speed per
sentence, and accuracy score.

Table 7 shows a notable relationship between
handwriting quality and OCR performance metrics.
As handwriting declines from “Best” to “Worst,”
processing time, average speed per sentence, and error
rates (both CER and WER) increase significantly, while
WRA decreases dramatically. Specifically, “Best”
handwriting quality has the lowest CER and WER
rates, 2.35% and 8.11%, respectively, and the highest
WRA at 95.30%. In contrast, “worst” handwriting
quality results in a significantly higher CER (33.22%)
and WER (66.44%), with a drastic reduction in WRA
to as low as 4.03%. This degradation is reflected in the
average speed per sentence, which rises from around
22 seconds for “Best” handwriting to more than
39 seconds for “Worst.” These patterns indicate that as

Table 6. Summary of key criteria for evaluating handwriting quality
Handwriting Consistency in

Y-coordinate
Spacing between
words

Character
legibility

Pen pressure
and stroke
consistency

Aesthetic appeal

Best Same line Consistent Clearly legible
characters

Uniform
throughout the
writing

Pleasing

Average Some variation, within
a defined threshold

Minor variations,
within an acceptable
range

Some variations
not hinder
overall legibility

Minor
variations

Adequate
with room for
improvement

Worst Significant variation Irregular or excessive Inconsistencies Significant
irregularities

Unattractive or
messy

Table 7. Handwriting Match and Artificial Intelligence Content System Performance Evaluation
Number of sentences 3 (43 words,

including
punctuation)

6 (115 words, including
punctuation)

11 (181 words,
including punctuation)

Average
(6.6 words)

Handwriting qualities Best Good Worst Best Good Worst Best Good Worst Average
Total lines 3 5 7 9 12 15 14 19 22 11.7
Processing time (seconds) 65.07 71.8 80.6 134.76 286.85 216.90 414.4 414.9 430.7 244.97
Average speed per sentence
(seconds)

21.69 23.93 26.8 22.46 47.8 36.15 37.67 37.71 39.15 37.15

CER (%) 2.35 4.69 17.92 1.18 4.04 28.74 2.03 7.14 33.22 8.56
WER (%) 8.11 21.62 40.54 5 12 68.00 8.97 19.87 66.44 24.22
WRA (%) 95.30 83.70 10.81 95.60 83 2.00 78.21 53.85 4.03 57.76
Abbreviations: CER: Character error rate; WER: Word error rate; WRA: Word recognition accuracy.

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

89

Fig. 9. Graphical representation of Table 7, offering
clear visual insight for the untrained eye

handwriting clarity deteriorates, OCR systems struggle
more, taking longer to process text and producing
lower accuracy. This emphasizes the importance of
handwriting quality in achieving efficient and accurate
OCR, demonstrating that even minor deviations from
optimal handwriting can have a significant impact on
recognition performance.

The graphical representation of Table 7
offers a clear visual insight into our OCR system’s
performance across various handwriting qualities.
This graphical representation facilitates an intuitive
understanding of the system’s capabilities and
limitations by highlighting trends and disparities
across various categories of handwriting quality. Fig. 9
shows distinct trends by plotting a weighted sum of
key metrics: total lines, processing time (seconds),
average speed per sentence (seconds), CER, WER,
and WRA. The bar colors represent different sentence
counts—3 sentences (blue), 6 sentences (green), and
11 sentences (red), while the black line represents the
average sentence count for each metric.

7.1.7. Limitations
Handwriting recognition through OCR

encounters several challenges, impacting its
effectiveness in capturing and interpreting diverse
styles of handwritten text. It struggles with text
written directly on lines, as this deviates from the
standard way of writing. In contrast, it performs very
well when text is placed between lines. Furthermore,

OCR’s reliance on perfectly aligned images makes it
vulnerable to inaccuracies with tilted or rotated inputs.
Page curvature complicates recognition because OCR
is designed for flat pages and can struggle with curved
surfaces. Inconsistencies in lined pages, as well as
deviations from expected straight-line formation, have
an impact on accuracy. A fixed threshold for recognizing
handwriting does not account for the variability in
individual styles, and poor handwriting can result
in time-consuming processing, reducing real-time
efficiency. It is obvious that additional developments
in OCR technology are required considering these
constraints. It is imperative to tackle these challenges
to maximize the practical uses of OCR and enhance
its flexibility to the ever-changing scenarios posed by
handwritten documents in the real world.

7.2. AI Content Detection
The trained AI model achieved commendable

accuracy in distinguishing between human-generated
and AI-generated text, as shown in Table 7. After a
meticulous training process on a dataset tailored to the
study’s objectives, the model demonstrated a strong
ability to flag content with the signature characteristics
of AI-generated language.

The OCR stage extracts textual content from
images, which is then used as input for the AI
content detection model within the HMAC system.
The AI content detection model, which is primarily
based on advanced transformer-based architecture,
examines the provided text to determine whether it
was generated by a human or by AI. The findings of
this detection process are complex and offer insightful
information about the text in question. The model
calculates the percentage of content that is attributed
to human authorship and the percentage that has the
characteristics of AI-generated language. The output’s
dual nature serves as a quantifiable breakdown, clearly
showing the proportion of the submitted assignments
generated by AI versus those written by humans. The
text shown in Fig. 7 was generated using ChatGPT,
and when processed by the model, it produced the
following result.
•	 Class 0: 01.20%
•	 Class 1: 98.80%.

7.3. Performance Metrics
The performance of the AI content detection

model was evaluated at two stages: before and after fine-
tuning. The model was refined, allowing it to distinguish
between human-generated and AI-generated content
more accurately. The model’s remarkable accuracy of
93.07% before fine-tuning demonstrates its capacity
to accurately classify the source of content in each

Table 8. Performance measures before and after
fine-tuning. This table compares key performance
measures, such as accuracy and F1 score, before

and after the fine-tuning process
Performance
measures

Before fine-tuning After
fine-tuning

Accuracy 93.07 98.3
F1 0.68 0.84

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

90

assignment. After applying fine-tuning techniques, its
accuracy dramatically increased to 98.3%. Moreover,
significant improvements were observed in the F1
score, a measure that strikes a balance between recall
and precision. Before fine-tuning, the F1 score was
0.68, indicating a satisfactory performance. After fine-
tuning, it rose dramatically to a remarkable 0.84. The
result are well presented in Table 8.

7.4. Similarity Check
For similarity detection, the text generated

from the handwriting detection step was compared
to the previously submitted assignments stored in the
database.

Fig. 10 depicts the change in similarity detection
results before and after removing stopwords.

For this graph, a total of 21 files were used for
comparison. The contents of 10 files were completely
unique, while the remaining files contained similar
to the first set of 10 files. The graph clearly shows
that removing stopwords significantly decreased
the similarity percentage. The mean difference in
similarity was calculated to be around 14.905 using
the specified formula.

8. Conclusion and Recommendations
This multiple-layered strategy demonstrates that

HMAC is a useful platform that not only detects the
use of AI-generated content but also actively addresses
issues on academic integrity. The technology provides
students with an easy platform to submit assignments,
streamlining the assessment process for professors. By
doing so, HMAC provides teachers with the resources
they need to properly detect duplicate and AI-generated
content, ensuring an impartial and rigorous assessment
environment. HMAC serves as a preventive measure

against the inappropriate use of generative models
in educational contexts and is crucial in preserving
the learning objectives of assignments by providing
teachers with a useful tool for assessment. It helps
to maintain the educational value of assignments
while actively discouraging the misuse of generative
models. HMAC acts as a vital safety net as education
evolves in the digital age, ensuring that assignments
fulfill their purpose of fostering authentic learning
experiences.
The contributions of this paper include the following:
(i) Improved handwritten content extraction

with OCR: This paper describes how our
OCR component improved the extraction and
interpretation of handwritten content from
images, particularly in the context of academic
documents and assignments. This includes
improvements in accuracy and efficiency,
which add to the overall landscape of document
digitization.

(ii) Enhanced identification of AI-generated content:
Compared to other approaches, this research
demonstrates how HMAC considerably enhances
the recognition of AI-generated content while
upholding academic integrity.

Expanding the system’s support for multi-
page PDFs is a critical priority, necessitating
optimizations in the OCR, content detection, and
plagiarism-checking modules to enable seamless
navigation of assignments spanning multiple
pages. The applicability of HMAC to a wider
range of academic resources would be significantly
increased through this modification. The future holds
promise for improving HMAC’s understanding
of semantic context and enabling more nuanced
contextual analysis. Incorporating sophisticated
natural language processing techniques would
allow the system to not only identify content but
also comprehend its meaning, fostering a better
understanding of assignments and their legitimacy.
Implementing a strong user feedback mechanism is
an important part of future development. Allowing
users to provide feedback on AI content detection
accuracy and plagiarism checks promotes iterative
refinement. A more user-centric and efficient system
can be created with the assistance of user-generated
suggestions for handling particular assignment types
or enhancing the user interface. Furthermore, the
integration of HMAC with Learning Management
Systems shows promise for streamlining assignment
submission and analysis processes in educational
institutions. Developing plugins or application
programming interfaces for seamless integration
with Moodle, Canvas, and Blackboard, among
other educational platforms, improves HMAC’s
accessibility and usability in educational ecosystems.

Fig. 10. Comparison of similarity percentage with
and without stopwords

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

91

In addition, incorporating features that provide users
with insights into the decision-making processes
of AI content detection models, thereby increasing
transparency and trust, is an important consideration
for future iterations of HMAC. This comprehensive
vision for future development establishes HMAC
as an evolving, adaptable, and user-friendly system
at the forefront of content analysis and plagiarism
detection in educational settings.

References
Bhat, A. (2023). GPT-Wiki-Intro (Revision 0e458f5).

Hugging Face. Available from: https://
huggingface.co/datasets/aadityaubhat/gpt-wiki-
intro [Last accessed on 2024 May 24].

Daniel, F., Cappiello, C., & Benatallah, B. (2019).
Bots Acting Like Humans: Understanding and
Preventing Harm. Available from: https://www.
floriandaniel.it/papers/danielic2019.pdf [Last
accessed on 2024 May 24].

Dong, R., & Smith, D.A. (2018). Multi-input
attention for unsupervised OCR correction.
In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics.
Vol. 1. p2363–2372.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding.
Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), 4171–4186.

Englmeier, T., Fink, F., & Schulz, K.U. (2019).
AI-PoCoTo-combining automated and
interactive OCR postcorrection. In: Proceedings
of the Third International Conference on Digital
Access to Textual Cultural Heritage. ACM.

Evershed, J., & Fitch, K. (2014). Correcting noisy
OCR: Context beats confusion. In: Proceedings
of the First International Conference on Digital
Access to Textual Cultural Heritage. ACM,
p45–51.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J.
(2006). Connectionist temporal classification:
Labelling unsegmented sequence data with
recurrent neural networks. In: Proceedings of
the 23rd International Conference on Machine
Learning. ACM, p369–376.

Guha, R., Das, N., Kundu, M., Nasipuri, M., & Santosh, K.
(2019). Devnet: An efficient cnn architecture for
handwritten Devanagari character recognition.
In: International Journal of Pattern Recognition
and Artificial Intelliegence. World Scientific,
Singapore.

Hämäläinen, M., & Hengchen, S. (2019). From the paft
to the fiiture: A fully automatic NMT and word
embeddings method for OCR post-correction.
In: Proceeding of International Conference
on Recent Advances in Natural Language
Processing. INCOMA, p432–437.

Jain, A.K., & Yu, B. (1998). Automatic text location
in images and video frames. In: Proceeding of
International Conference of Pattern Recognition.
ICPR, Brisbane, p1497–1499.

Jauhiainen, T.S., Linden, B.K.J., & Jauhiainen, H.A.
(2016). Heli, a word-based backoff method for
language identification. In: Proceedings of the
Third Workshop on NLP for Similar Languages
Varieties and Dialects VarDial3. Osaka, Japan,
p12.

Kauppinen, P. (2016). OCR Post-Processing by
Parallel Replace Rules Implemented as Weighted
Finite-State Transducers. University of Helsinki,
Finland.

Kettunen, K., & Koistinen, M. (2019). Open Source
Tesseract in re-OCR of Finnish Fraktur from
19th and Early 20th Century Newspapers
and Journals-Collected Notes on Quality
Improvement. Digital Humanitarian Network,
Virtual, p270–282.

Kettunen, K., Kervinen, J., & Koistinen, M. (2018).
Creating and using ground truth OCR sample data
for Finnish historical newspapers and journals.
In: Proceeding of DHN 2018 Digital Humanities
in the Nordic Countries 3rd Conference. Helsinki.

Kim, P.K. (1999). Automatic Text Location in Complex
Color Images Using Local Color Quantization.
Vol. 1. IEEE TENCON, p629-632.

Kissos, I., & Dershowitz, N. (2016). OCR error
correction using character correction and feature-
based word classification. In: 2016 12th IAPR
Workshop on Document Analysis Systems (DAS).
IEEE, p198–203.

Koistinen, M., Kettunen, K., & Kervinen, J. (2017).
How to improve optical character recognition of
historical finnish newspapers using open source
tesseract OCR engine? In: Proceedings of the
LTC. p279–283.

Koistinen, M., Kettunen, K., & Pääkkönen, T. (2017).
Improving optical character recognition of
finnish historical newspapers with a combination
of fraktur and antiqua models and image
preprocessing. In: Proceedings of the 21st Nordic
Conference on Computational Linguistics.
p277–283.

Levenshtein, V.I. (1966). Binary codes capable of
correcting deletions, insertions and reversals.
Soviet Physics Doklady, 10, 707–710.

Li, H., & Doermann, D. (1998). Automatic text tracking
in digital videos. In: Proceeding of IEEE 1998

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

92

Workshop on Multimedia Signal Processing,
Redondo Beach, California, USA, p21–26.

Li, M., Lv, T., Cui, L., Lu, Y., Florencio, D.,
Zhang, C., Li, Z., & Wei, F. (2021). TrOCR:
Transformer-based Optical Character
Recognition with Pre-trained Models. arXiv,
2109, 10282.

Lindén, K., Silfverberg, M., Pirinen, T., Hardwick, S.,
Drobac, S., & Axelson, E. (2012). HFST-An
Environment for Creating Language Technology
Applications. Studies in Computational
Intelligence. Springer, Berlin.

Llobet, R., Cerdan-Navarro, J.R., Perez-Cortes, J.C.,
& Arlandis, J. (2010). OCR post-processing
using weighted finite-state transducers. In:
2010 20th International Conference on Pattern
Recognition. p2021–2024.

Lu, N., Liu, S., He, R., Wang, Q., Ong, Y.S., & Tang, K.
(2024). Large Language Models can be Guided
to Evade AI-Generated Text Detection. https://
doi.org/10.48550/arXiv.2305.10847

Lund, W.B., Kennard, D.J., & Ringger, E.K. (2013).
Combining multiple thresholding binarization
values to improve OCR output. In: Document
Recognition and Retrieval XX, Vol. 8658.
International Society for Optics and Photonics,
p86580R.

Lund, W.B., Walker, D.D., & Ringger, E.K. (2011).
Progressive alignment and discriminative error
correction for multiple OCR engines. In: 2011
International Conference on Document Analysis
and Recognition. IEEE, p764–768.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Efficient Estimation of Word Representations
in Vector Space. https://doi.org/10.48550/
arXiv.1301.3781

Mindner, L., Schlippe, T., & Schaaff, K. (2023).
Classification of Human- and AI-Generated
Texts: Investigating Features for ChatGPT.
arXiv, 2308, 05341.

Mitrović, S., Andreoletti, D., & Ayoub, O. (2023).
ChatGPT or Human? Detect and Explain.
Explaining Decisions of Machine Learning
Model for Detecting Short ChatGPT-generated
Text. https://doi.org/10.48550/arXiv.2301.13852

Pelau, C., Dabija, D.-C., & Ene, I. (2021). What
makes an AI device human-like? The role of
interaction quality, empathy and perceived
psychological anthropomorphic characteristics
in the acceptance of artificial intelligence in the
service industry. Computers in Human Behavior,
122, 106855.

Reul, C., Christ, D., Hartelt, A., Balbach, N., Wehner, M.,
Springmann, U., Wick, C., Grundig, C., Büttner, A.,
& Puppe, F. (2019). Ocr4all-an Open-Source
Tool Providing a (Semi-) Automatic OCR

Workflow for Historical Printings. https://doi.
org/10.48550/arXiv.1909.04032

Reul, C., Springmann, U., Wick, C., & Puppe, F.
(2018). State of the art optical character
recognition of 19th century Fraktur scripts using
open source engines. https://doi.org/10.48550/
arXiv.1810.03436

Reynaert, M.W. (2010). Character confusion versus
focus word-based correction of spelling and OCR
variants in corpora. International Journal of
Documents Analysis and Recognition (IJDAR),
14(2), 173–187.

Rodriguez, J.D., Hay, T., Gros, D., Shamsi, Z., &
Srinivasan, R. (2022). Cross-Domain Detection
of GPT-2-Generated Technical Text. Available
from: https://aclanthology.org/2022.naacl-
main.88 [Last accessed on 2024 May 24].

Romero, V., Toselli, A.H., & Vidal, E. (2012).
Multimodal Interactive Handwritten Text
Transcription. Vol. 80. World Scientific,
Singapore.

Sabu, A. M., & Das, A. S. (2018). A survey on
various optical character recognition techniques.
In Proceedings of the 2018 International
Conference on Emerging Devices and Smart
Systems (ICEDSS) (pp. 1–5). IEEE.

 https://doi.org/10.1109/ICEDSS.2018.8544323
Sadasivan V.S., Kumar, A., Balasubramanian, S.,

Wang, W., & Feizi, S. (2023). Can AI-Generated
Text be Reliably Detected?

 https://doi.org/10.48550/arXiv.2303.11156
Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019).

DistilBERT, a Distilled Version of BERT:
Smaller, Faster, Cheaper and Lighter. https://
doi.org/10.48550/arXiv.1910.01108

Silfverberg, M., Kauppinen, P., & Lindén, K.
(2016). Data-driven spelling correction using
weighted finite-state methods. In: Proceedings
of the SIGFSM Workshop on Statistical NLP
and Weighted Automata. Association for
Computational Linguistics, Berlin, p51–59.

Springmann, U., & Lüdeling, A. (2016). OCR of
Historical Printings with an Application to
Building Diachronic Corpora: A Case Study
Using the RIDGES Herbal Corpus. https://doi.
org/10.48550/arXiv.1608.02153

Springmann, U., Najock, D., Morgenroth, H., Schmid, H.,
Gotscharek, A., & Fink, F.(2014). OCR of
historical printings of latin texts: Problems,
prospects, progress. In: Proceedings of the First
International Conference on Digital Access to
Textual Cultural Heritage. ACM, p71–75.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
& Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1),

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

93

1929–1958.
Uzun, L. (2023). ChatGPT and Academic Integrity

Concerns: Detecting Artificial Intelligence
Generated Content. Available from: https://
www.researchgate.net/publication/370299956-
chatgpt-and-academic-integrity-concerns-
detecting-artificial-intelligence-generated-
content [Last accessed on 2024 May 24].

Vobl, T., Gotscharek, A., Reffle, U., Ringlstetter, C.,
& Schulz, K.U. (2014). Pocoto-an open source
system for efficient interactive postcorrection
of OCRed historical texts. In: Proceedings of
the First International Conference on Digital
Access to Textual Cultural Heritage. ACM,
p57–61.

Wahle, J. P., Ruas, T., Mohammad, S. M., Meuschke,
N., & Gipp, B. (2023). AI Usage Cards:
Responsibly reporting AI-generated content

[Conference poster]. 2023 ACM/IEEE Joint
Conference on Digital Libraries (JCDL),
Santa Fe, NM, USA. https://doi.org/10.1109/
JCDL57899.2023.00060

Wick, C., Reul, C., & Puppe, F. (2018). Calamari-a
High-Performance Tensorflow-Based Deep
Learning Package for Optical Character
Recognition. https://doi.org/10.48550/
arXiv.1807.02004

Wick, C., Reul, C., & Puppe, F. (2018). Comparison
of OCR accuracy on early printed books using
the open source engines Calamari and OCRopus.
Journal for Language and Conputational
Linguistics, 33, 79–96.

Wu, V., Manmatha, R., & Riseman, E.M. (1997).
Finding text in images. In: Proceedings of
Second ACM International Conference on
Digital Libraries. Philadelphia, PA,p23–26.

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

94

Android game developed in Unreal Engine) during his
college years. His technical skills include C++, Python,
Docker, Django, ReactJS, HTML/CSS, and Unreal
Engine. He has published a research paper at ICACAT
2023. Ambuj’s interests lie in AI, web development,
and game design.

Phiroj Shaikh is currently an Associate
Professor at the Department of
Computer Engineering, The Bombay
Salesian Society’s Don Bosco Institute
of Technology, Mumbai, India, affiliated

with the University of Mumbai. He earned a PhD degree
in Computer Science & Technology (in the domain of
Web Data Mining) from Nagpur University, Nagpur,
India. He has academic experience of over two decades
with more than 60 research publications in journals/
conferences. His areas of interest include natural language
processing (with a special focus on regional language
development), computational linguistics, and algorithm
analysis. He is currently focusing on Educational
Technology research area. He has been invited as an
expert for faculty development programs, as a session
expert, and as a reviewer at various conferences.

Amiya Kumar Tripathy is currently
a Professor at the Department of
Computer Engineering, The Bombay
Salesian Society’s Don Bosco Institute
of Technology, Mumbai, India, affiliated

with the University of Mumbai. He earned a PhD degree
in Computer Science & Engineering (in the domain of
Data Mining & Wireless Sensor Networks) from the
Indian Institute of Technology Bombay, Mumbai, India.
He was an adjunct professor at the School of Science,
Edith Cowan University (ECU), Australia. He was a
visiting researcher at the Rajamangala University of
Technology, Bangkok, Thailand, working on Internet
of Things (IoT)-enabled remote monitoring for the
Precision Agriculture Farming project. He has been in
the software industry, research, and academia for more
than two decades, having around 150 publications in
journals/conference papers. His research focuses on data
science, computer vision, remote sensing, and IoT for
Precision Agriculture. He has contributed to numerous
collaborative research and consultancy projects in the
domain of data analytics in India and abroad. He has
served on the technical program committees of several
international conferences, been invited as a plenary
speaker, and co-chaired sessions at various conferences.

AUTHOR BIOGRAPHY

Hrishikesh Pramod Panigrahi is
currently pursuing a Bachelor of
Engineering in Computer Engineering
at The Bombay Salesian Society’s
Don Bosco Institute of Technology,

Mumbai University. He has demonstrated strong
technical expertise through hands-on experience in
backend development, machine learning, and web
applications. Hrishikesh has led backend teams,
contributed to AI-driven academic integrity tools,
and developed innovative mobile and web solutions.
His technical proficiency includes programming
languages such as Java, GoLang, Python, and Kotlin,
and frameworks such as Django, ReactJS, and
TensorFlow. He has published a research paper titled
“Smart Posture Analyzer For Exercise” at the Institute
of Electrical and Electronics Engineering (IEEE). His
areas of interest include artificial intelligence, system
design, and full-stack development.

Siddhanth Naidu is a Computer
Engineering student at The Bombay
Salesian Society’s Don Bosco Institute
of Technology, Kurla (Mumbai
University). He has worked on

impactful projects such as FLMS (Flood Location,
Management, and Solution), an IEEE-published flood
management system, and Dawn of Survival, an Android
game developed in Unreal Engine. His technical skills
include Java, Spring Boot, Python, ReactJS, HTML/CSS,
Unreal Engine, and Unity. He has presented research at
the International Conference on IoT, Communication,
and Automation Technology (ICACAT) 2023 and was
part of the ACM (Aluminum Composite Material)
Design Team at Don Bosco Institute of Technology,
Kurla. Siddhanth’s interests lie in AI, web development,
system design, and game design.

Ambuj Pandey is a Computer
Engineering graduate from The
Bombay Salesian Society’s Don
Bosco Institute of Technology, Kurla
(Mumbai University). He has worked

on impactful projects such as EDT, Expiry (Expiry
Date Tracker, an Android app to track the expiry of
purchased groceries), FLMS (an IEEE-published
flood management system), and Dawn of Survival (an

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

DOI: 10.6977/IJoSI.202506_9(3).0005
H. Panigrahi, S. Naidu, etc./Int. J. Systematic Innovation, 9(3), 75-95 (2025)

95

Appendix

Appendix 1. Explanation of Precision, Recall, and F1-score
In this appendix, we provide an explanation of precision, recall, and F1-score, which are used as evaluation

metrics for HMAC.
(i) Precision: A measure of the accuracy of positive predictions. It is defined as the ratio of true positives to

the sum of true positives and false positives.

No. of true positivesPrecision=
No. of true positives + No. of false positives

A high precision indicates a small number of false positives, meaning that the model has a low tendency to
classify negative instances as positive.

(ii) Recall: Also known as sensitivity or the true positive rate, it measures the proportion of actual positive
instances that are correctly identified by the model. It is defined as the ratio of true positives to the sum of
true positives and false negatives.

No. of true positives=
No. of true positives + No. of false nega

Recall
tives

A high recall indicates a small number of false negatives, meaning that the model effectively captures most of
the positive instances.

(iii) F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced measure of
both metrics. It can be computed using the following formula:

2 Precision Recall1
Precision Recall

F score × ×
− =

+

The F1-score ranges between 0 and 1, where a value of 1 represents a perfect balance between precision and recall.

https://dx.doi.org/10.6977/IJoSI.202506_9(3).0009

