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Abstract

The widespread use of drones has made drone detection a critical factor in various fields, particularly in security and 
defense. However, this task presents unique challenges due to the high speed, small size, and ability of drones to blend 
into their surroundings, which can hinder detection effectiveness. This paper introduces enhancements to the You 
Only Look Once (YOLO)-v8 model to improve real-time drone detection capabilities, especially when deployed on 
resource-constrained devices. We propose an improved model called YOLOXpress, which optimizes both processing 
speed and model size while maintaining an acceptable level of accuracy. By replacing the Cross-Stage Feature Fusion 
modules in the Backbone and Neck with Re-parameterization Convolution and RepC3 modules, we significantly 
reduced the number of computations, achieving a 12.25% increase in processing speed (frames per second) and a 
69.96% reduction in model size. Although there was a 6% decrease in average accuracy compared to the original 
YOLO-v8 model, YOLOXpress remained effective for real-time drone detection. Experiments conducted on the 
TIB-Net dataset confirmed that this model is highly suitable for deployment on resource-limited devices, such as 
compact embedded systems.
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1. Introduction

The application of scientific and technological 
advancements in drone production is becoming 
increasingly widespread. Along with its exceptional 
advantages, drone production also comes with 
unforeseeable consequences. Small drones have 
become more prevalent in recent years, with various 
models performing various tasks. This directly 
threatens the security of many countries, as drones 
can be used for espionage, surveillance, and suicide 
missions, often equipped with weapons to target key 
locations with deliberate intent, thus forming new and 
unconventional methods of warfare (Al-lQubaydhi 
et al., 2024). To counter the threats posed by drones, 
developing and implementing anti-drone systems 
has become an urgent priority in modern defense and 
security.

Detecting drones and providing early warnings 
have received considerable attention from various 
research groups and have been extensively studied. In 

recent years, many studies have utilized deep-learning 
models for drone detection. Research employing 
computer vision and deep learning models, such as You 
Only Look Once (YOLO)-v3 (Alsanad et al., 2022), 
YOLO-v5 (Lv et al., 2022), and YOLO-v8 (Kim et al., 
2023), has yielded promising results.

However, most present anti-drone devices face 
limitations, such as fixed installation requirements, large 
size, easy detectability, and difficulty in deployment in 
areas with space constraints. These limitations directly 
affect and reduce the effectiveness of the devices. 
Therefore, developing new deep-learning models with 
smaller sizes, real-time processing speeds, and higher 
accuracy for drone detection is essential. Developing 
such models would help reduce hardware resource 
usage when designing new anti-drone devices, thereby 
addressing the issue of device size limitations.

This paper is organized as follows: Section 1 
introduces the research problem addressed in this study. 
Section 2 summarizes related works on unmanned 
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aerial vehicle (UAV) detection; Section 3 begins with 
an overview of the methodology used in this research, 
followed by a presentation of the YOLOv8 network 
architecture, including detailed descriptions of its key 
modules. This section also presents the improved UAV 
target detection model and its architecture. Section 4 
introduces the dataset and experimental setup, followed 
by ablation studies and comparison experiments using 
the publicly available TIB-Net dataset. It concludes 
with experiments conducted on a self-constructed 
dataset to validate the feasibility of the proposed 
method thoroughly. Finally, Section 5 summarizes the 
research findings and outlines potential future research 
directions.

2. Related Work
The task of object detection involves identifying 

objects within a specific frame. One commonly used 
method is leveraging convolutional neural networks 
(CNN) to extract and detect object features. Since the 
2010s, as deep learning has advanced, the quality of 
object detection algorithms has continuously been 
upgraded and improved, with notable algorithms such 
as Region-Based CNN (RCNN) and faster RCNN. 
Although these networks have superior performance 
in terms of accuracy compared to classical algorithms, 
their complex structures hinder the models from 
achieving speeds equivalent to real-time processing. 
This is a critical requirement for real-world applications 
in object detection. Therefore, many studies have 
focused on creating models that balance speed and 
accuracy to enable wide practical implementation (Lee 
et al., 2019; Zhai et al., 2023; Zhu et al., 2021).

At present, the YOLO series of models has 
effectively addressed this problem. The YOLO series 
has undergone nine iterations of improvement, with 
several minor versions showing superior performance 
in both speed and accuracy (Terven et al., 2023). 
These models are widely applied across various fields, 
including medicine, transportation, industry, and UAV 
detection and warning systems. Research groups have 
conducted numerous studies on applying YOLO for 
UAV detection. Some studies have shown promising 
results, such as PaddlePaddle (PP)-YOLO (Long et al., 
2020), an object detection method based on YOLOv3, 
optimized and improved to balance performance and 
efficiency. PP-YOLO employs existing techniques to 
improve object detection accuracy without increasing 
the number of model parameters and computations. 
With a mean average precision (mAP) performance 
of 45.2% and frames per second (FPS) speed of 
72.9, PP-YOLO surpasses existing detectors, such 
as EfficientDet and YOLOv4. For Mob-YOLO (Liu 
et al., 2022), the authors proposed a lightweight 
model, an object detection method for UAVs. Based on 

the high-performance YOLOv4 model, MobileNetv2 
(Sandler et al., 2018), a lightweight CNN, is used to 
replace the original CSPDarknet53 (Bochkovskiy 
et al., 2020) architecture of YOLOv4. This modification 
reduces the model size and simplifies computation, 
resulting in a significant increase in processing speed. 
Since 2023, improved models derived from YOLOv8 
have been actively developed for UAV detection 
applications. For example, a study by Yılmaz & Oruç 
(2024) improved YOLOv8’s performance in low-light 
environments by incorporating data augmentation 
techniques for brightness and color adjustment. It also 
enhanced feature extraction layers to optimize detection 
accuracy and speed, making the model more effective 
for real-time drone monitoring in challenging lighting 
conditions. Similarly, a study by Zamri et al. (2024) 
integrated attention modules and contextual learning 
to optimize UAV detection in aerial surveillance, 
improving performance in high-resolution video feeds 
and complex detection scenarios, such as identifying 
UAVs at high altitudes or in cluttered environments.

Today’s primary challenges in applying deep 
learning to anti-drone systems are model size and 
real-time processing speed. A practical system, 
with a compact size and the ability to be installed 
in locations with limited space, requires simple and 
efficient hardware. Therefore, the hardware resources 
of anti-drone systems must be optimized. Although 
YOLO-v8 has been significantly improved in terms 
of performance and object detection capabilities, one 
notable drawback when deploying it on embedded 
devices is its slower processing speed compared to 
previous versions, especially when applied to devices 
with limited computational resources. Therefore, 
while YOLO-v8 brings substantial upgrades in object 
detection performance, it still faces limitations in 
terms of speed when deployed on embedded devices 
with constrained hardware configurations. This paper 
proposes a solution that improves computational speed 
while reducing model size. The approach discussed in 
this paper aims to minimize the number of computations, 
enhancing processing speed without compromising 
the accuracy necessary for object detection. To 
achieve this objective, a re-parameterization method 
(Wang et al., 2023) is employed. According to the 
study, the re-parameterization method integrates 
computational components into a single inference 
step. This method transforms a model with a complex 
structure during training into a significantly simpler 
structure when deployed on hardware devices, thereby 
increasing processing speed. With the observations 
and evaluations mentioned above, a new YOLOXpress 
model has been developed to address the limitations 
of YOLO-v8 in drone detection tasks. This paper 
presents the re-parameterization method used to create 
YOLOXpress based on the YOLO-v8 framework. 
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Several layers in the YOLO-v8 architecture are replaced 
to create YOLOXpress with features better suited to 
the task’s requirements. Through experimentation, the 
model has achieved notable results and demonstrated 
advantages over YOLO-v8, such as being smaller, 
deployable on more cost-effective and smaller devices, 
and ensuring greater usability, flexibility, and the 
ability to be deployed in various locations, terrains, 
and conditions. Furthermore, the model strikes a 
balance between speed and accuracy, processing faster 
than YOLO-v8 while maintaining an acceptable level 
of accuracy.

3. Method
3.1. YOLO-v8 Architecture

YOLO-v8 is an upgraded version of the YOLO 
model series, designed to enhance speed and accuracy 
in real-time object detection tasks. The architecture 
of YOLO-v8 comprises three main components: 
Backbone, Neck, and Head. The Backbone extracts 
key features from images through a CNN network. The 
Neck utilizes techniques such as the feature pyramid 
network (FPN) and path aggregation network (PAN) 
to combine multiple-level features, improving object 
detection capabilities, particularly for small objects. The 
Head predicts bounding boxes and labels, with Non-
Maximum Suppression reducing prediction overlap.
•	 Backbone: This component is responsible for 

extracting features from the input image. The 
Backbone typically uses deep CNN to learn low-
level and high-level features from the image.

•	 Neck: This section enhances the features 
extracted by the Backbone. The Neck usually 
includes layers such as FPN or PAN to combine 
and further enrich the features.

•	 Head: The final part of the network is responsible 
for generating the final predictions. The Head 
predicts the bounding boxes and the classes of 
objects in the image.

YOLO-v8’s loss function consists of object 
existence prediction, object classification, and accurate 
bounding box localization. Significant improvements 

such as Mosaic augmentation and other optimization 
techniques enhance YOLO-v8’s learning and 
generalization abilities. However, for specific tasks, 
such as real-time UAV detection, YOLO-v8 reveals 
certain limitations, particularly in detecting small 
objects, failing to fully meet real-time requirements 
on embedded devices. This limitation arises from the 
computational inefficiencies of the Cross-Stage Feature 
Fusion (C2f) block, which remains cumbersome and 
suboptimal in terms of time efficiency. The architecture 
of C2f is shown in Fig. 1.

A layer with four characteristic parameters (w, h, 
Cm, Cout, K) was considered, where:

h denotes the height of the feature map,
w denotes the width of the feature map,
Cm represents the depth of the input feature map 

(with Cout ≥ Cm),
Cout represents the depth of the output feature 

map,
and K represents the kernel size of the 

convolutional layer.
The computational cost of C2f was calculated by 

Eq. (1) (Wei et al., 2021):
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where n is a parameter of C2f, representing the 
number of times the BottleNeck block is repeated, 
with n ≥ 1, K1 and K2 are the sizes of the two standard 
CBS layers, where K1 = 1 and K2 = 3, respectively).

Assuming Cm = 3, Cout = 32, h = 640, w = 640 
(standard input image size), the computational cost 
is given by CostC2f = 196758400 + n*4718592000 ≥ 
6645350400 (parameters).

Thus, even with the input image size and the 
number of iterations n = 1, the amount of computation 
required by C2f is still relatively large.

Fig. 1. Architecture of cross-stage feature fusion in YOLO-v8. Redrawn based on the original design by Zhai et al. 
(2023), with some adjustments to suit our study 

Abbreviation: CBS: Convolution, batch normalization, and SiLU activation functions
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3.2. YOLO-v8 Improvement for Real-time UAV 
Detection

For the real-time UAV detection task, the 
model must meet several requirements; it should 
be lightweight, suitable for embedded devices, and 
capable of accurately identifying small objects in 
real-time.

Based on the proposals and results from previous 
studies (Howard et al., 2017; Sandler et al., 2018; 
Terven et al., 2023), to reduce the model size, it is 
necessary to decrease the number of computations in 
the convolutional layers. Therefore, the C2f module 
was replaced with a simpler one.

Several challenges must be addressed regarding 
the small object detection problem: no object should 
be missed, and the object must be distinguishable 
from the background. Studies have proved that a 3×3 
convolutional layer is effective in gathering local 
information while requiring lower computational 
costs compared to larger convolutional layers 
(Dosovitskiy, 2020; Szegedy et al., 2015; Szegedy 
et al., 2016). At present, the main approaches for 
small object detection rely on the Vision Transformer 
(ViT) architecture (Wu & Dong, 2023; Zhai et al., 
2023; Zhu et al., 2021),(Dosovitskiy, 2020). This 
study showed that although ViT offers significant 
advantages in capturing global information, its 
cost is excessively high due to the use of the Self-
Attention mechanism.

Therefore, this paper proposed an architecture 
block primarily based on 3 × 3 and 1 × 1 convolutional 
layers to retain the same level of information as the 
C2f block in YOLO-v8, but with reduced model 
size. The C2f layer in the Backbone was replaced 
with Re-parameterization Convolution (RepConv) to 
create a lighter Backbone while ensuring sufficient 
information is provided to the Neck. Subsequently, 
the C2f layer in the Neck was replaced with RepC3 
to reduce computational complexity during feature 
extraction and aggregation while retaining essential 
object-related information.

3.2.1. Re-parameterization convolution
As presented above, we proposed an architectural 

block called RepConv in this section. The architecture 
of RepConv is shown in Fig. 2.

To compare RepConv with the C2f block, a layer 
with four characteristic parameters was considered (w, 
h, Cm, Cout, K).

The computational cost with RepConv was 
calculated by Eq. (2) (Wei et al., 2021):
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Hence, CostRepConv < CostC2f
As presented in Section 3.2, the 3 × 3 

convolutional layer captures local information in a 
smaller spatial area compared to larger convolutional 
layers, such as 5 × 5 or 7 × 7. In the case of the drone 
detection task, the object typically occupies a very 
small portion of the entire image space. Therefore, 
using a convolutional layer that observes a large spatial 
area made it challenging to detect the object’s features.

In addition, including a 1 × 1 branch to retain 
the original information of the object, which is then 
aggregated, helps highlight the key features extracted 
by the 3 × 3 layer.

This demonstrates that RepConv performs 
well as expected, with the target object standing out 
relative to its surrounding area. RepConv is capable 
of replacing C2f in the Backbone to meet real-time 
requirements.

3.2.2. RepC3

As demonstrated in Section 3.2 regarding the 
effectiveness of RepConv and its comparison with 
C2f, the BottleNeck blocks in C2f were proposed to be 
replaced with RepConv blocks to improve the speed of 
the model’s Neck. The architecture of RepC3 is shown 
in Fig. 3.

Computational cost with RepC3w as calculated 
using the following equation:

Fig. 2. Architecture Re-parameterization Convolution. 
Redrawn based on the original design by Zhai et al. 

(2023), with some adjustments to suit our study 
Abbreviation: BN: Batch normalization; 

CBS: Convolution, batch normalization, and SiLU 
activation functions; SiLU: Sigmoid linear unit
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From Eqs. (4) and (5), we can see: CostRepC3 < CostC2f

Two modules, RepConv and RepC3, were 
developed based on the aforementioned theoretical 
frameworks and reasoning. Both architectures achieved 
the dual objectives of minimizing computational 
overhead while preserving the informational fidelity 
of target objects. These two architectural blocks were 
then integrated to replace the Backbone of the original 
YOLO-v8 model, completing the YOLOXpress model.

3.3. Architecture YOLOXpress
Based on the theoretical foundation presented in 

Sections 3.1 and 3.2, the C2f blocks were replaced with 
RepConv and RepC3, respectively, as shown in Fig. 4.

The architecture in Fig. 4 primarily illustrates that 
the C2f blocks are the main components being replaced. 
We also modified the model’s upscaling method by 
employing a convolutional layer instead of interpolation, 
which was used in the original architecture. Techniques 
such as anchor-free design, Feature Pyramid architecture, 
CIoU loss, DFL, and BCE remained unchanged.

4. Experiment and Results
This paper employed the UAV dataset, originally 

used to train the TIB-net model (Sun et al., 2020), for 
training the YOLOXpress model. The results obtained 
from training were then utilized to evaluate the 
model’s performance, conduct ablation experiments, 
and compare them with other models.

4.1. Dataset
The TIB-Net UAV dataset contains 2,850 images, 

capturing various types of UAVs, including multi-
rotor UAVs and fixed-wing UAVs. These images were 

collected using a ground-based camera 500 m from the 
airborne UAVs, with a 1920×1080 pixels resolution. 
The scenery in the images includes low-altitude views, 
such as the sky, trees, and buildings, recorded at 
different times of the day and under various weather 
conditions. Analysis reveals that the UAVs occupy 
<1% of the area in each image.

4.2. Setup and Training Network
In this experiment, data from TIB-net were 

utilized to train the YOLO-v8 and YOLOXpress 
models. The experiment was performed on two pieces 
of hardware. The model training phase employed 
the Google Colab platform with a Tesla V100 GPU. 
After completing the training, the model was deployed 
on Jetson Orin Nano hardware. The NVIDIA Jetson 
Orin Nano 8GB Developer Kit was used for artificial 
intelligence processing applications, featuring a 6-core 
Arm® Cortex®-A78AE v8.2 64-bit CPU with 1.5MB L2 
+ 4MB L3 cache and an NVIDIA Ampere architecture 
GPU with 1024 CUDA cores and 32 Tensor cores. 
This configuration provides AI processing power up to 
80 times greater than its predecessor, the Jetson Nano.

4.2.1. Loss function setting
The loss function of the YOLOXpress model 

is presented in Eq. (vi). It retains the same structure 
as the YOLOv8 loss functions, consisting of three 
components: rectangular box loss (LossBox), distribution 
focal loss (Lossdfl), and classification loss (Losscls).

Loss a Loss b Loss c Lossbox dfl cls� � �* * *  (6)

In this case, a, b, and c each represent the 
weighted proportion of the corresponding loss function 
in the overall loss function. In this experiment, the 
three weights were set as a = 7.5, b = 1.5, and c = 0.5.

4.2.2. Network training
Before training the network, the data directory 

was prepared in the YOLO-v8 format, which includes 
two folders: “images” and “labels.” A batch size of 16 

Fig. 3. Architecture of RepC3 
Abbreviation: CBS: Convolution, batch normalization, and SiLU activation functions; 

RepConv: Re-parameterization Convolution
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was chosen, and the model was trained for 250 epochs 
using an initial learning rate of 0.01. Table 1 describes 

the configuration parameters used during network 
training.

Fig. 4. Architecture of the YOLOXpress model 
Abbreviation: CBS: Convolution, batch normalization, and SiLU activation functions; 

RepConv: Re-parameterization Convolution; SiLU: Sigmoid linear unit; SPPF: Spatial Pyramid 
Pooling Fusion
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4.3. Evaluation Metrics
To evaluate the model’s quality, parameters, such 

as Precision (P), Recall (R), Average Precision (AP), 
mAP, the number of parameters, model size, and FPS 
were used.

The precision rate and recall were calculated 
using the following Eqs. (7) and (8), respectively:

P TP
TP FP

=
+( ) ×100%

 (7)

R TP
TP FN

=
+( ) ×100%  (8)

True Positives (TP) represent the number of 
accurately detected objects, False Positives (FP) 
represent the number of non-target objects incorrectly 
detected as targets and False Negatives (FN) represent 
the number of targets not detected.

The AP and mAP were calculated using the 
following Eqs. (9) and (10), respectively:

( )
1

0

 ( )AP p r d r=∫  (9)

1

1 
N

i
i

mAP AP
N

=

= ∑  (10)

where p(r) is precision at recall r, and N denotes 
the total number of classes. In this paper, N = 1 
corresponds to the task of UAV detection.

4.4. Ablation Experiments
In this section, the impact of each module 

replaced in the structure of the Model is clarified. 
Based on the TIB-net UAV dataset, replacement 
experiments were conducted on the original YOLO-v8 
model, where modules in the Backbone and Neck were 
sequentially replaced according to a predetermined 
order. Four models were proposed for examination 
to analyze each module’s impact. Model (a) is the 
standard YOLO-v8, Model (b) is the enhanced version 
with the RepC3 module replaced in the Neck, Model 

(c) is the enhanced version with the RepConv module 
replaced in the Backbone, and Model (d) is the 
enhanced version with both the RepC3 and RepConv 
modules replaced. The changes in these models were 
evaluated through the quantitative assessment of the 
parameters used to measure model performance, as 
presented in Table 2.

From the results in Table 2, the following 
observations can be made:

The model with the C2f module in the Backbone 
replaced by the RepConv module was proven 
effective in reducing the model size while maintaining 
performance. This is reflected in the data shown in 
Table 2, where the model sizes of (c) and (d) decreased 
by 11.17 MB and 12.44 MB, respectively, compared to 
model (a). Meanwhile, the P, R, and mAP parameters 
changed only slightly compared to model (a), with 
mAP decreasing by 0.244% for model (c) and 6.136% 
for model (d), and the changes in P and R being 
insignificant.

The reduction in the number of parameters, 
model size, and the number of computations in 
model (b) compared to model (a) demonstrates the 
effectiveness of the RepC3 module when replacing 
the C2f module in the Neck of model (a). The number 
of parameters decreased by 44.3%, the model size 
decreased by 80.8%, and GFLOPs decreased by 
43.9%, while the P, R, and mAP parameters changed 
slightly compared to model (a). These findings 
prove that the RepC3 module effectively reduces 
computational load and model size while maintaining 
model performance.

The YOLOXpress model, which incorporated 
both the RepC3 and RepConv modules described in 
Section 3, showed a clear improvement in model size, 
GFLOPs, and parameters compared to the YOLO-
v8n model, as indicated in Table 2. The performance 
metrics P, R, and mAP decreased slightly compared 
to model (a), but the differences were negligible. The 
difference between the models is shown in the feature 
map images in Fig. 5.

Four models were tested on Jetson Orin 
hardware, with measured results compared in Fig. 6. 
The findings demonstrate that the YOLOXpress model 
(modified by replacing the C2f module with the RepC3 
and RepConv modules) achieved a balance between 
processing speed and accuracy. Specifically, compared 
to the original YOLOv8 model, YOLOXpress attained 
93.99% accuracy while delivering a 12.25% increase 
in FPS and a 69.89% reduction in model size. These 
improvements made YOLOXpress highly suitable 
for deployment on low-configuration, compact-sized 
devices, which are ideal for applications demanding 
efficient object detection without compromising 
performance, even in hardware-constrained 
environments. The results underscore YOLOXpress’s 

Table 1. Network training configuration
Parameter Values
Epochs 250
Warm up epochs 10
Batch size 16
Image size 640×640
Initial learning rate 0.01
Final learning rate 0.01
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practical potential as a resource-efficient solution for 
real-world scenarios.

4.5. Comparative Experiment

To clarify the advantages of the YOLOXpress 
model, we compared it with the fastest models in 
the YOLO series, which are currently widely used 
on embedded devices (YOLOv8n, YOLOv6-s3.0 [Li 
et al., 2022], and YOLOv5n). The models were trained 
using a dataset we prepared, consisting of 8,022 
images of various UAV with a resolution of 640 × 640 
pixels. The results are presented in Table 3. The models 
selected for comparison are all official versions.

According to Table 3, it can be observed 
that: YOLOXpress achieved an FPS of 23.44, the 
highest among the models compared, demonstrating 
exceptional processing capability. This speed allows 
YOLOXpress to operate efficiently on embedded 
devices with limited computational resources. 

Although YOLOv8n had the highest accuracy, its 
processing speed was only 18.02 FPS, significantly 
lower than that of YOLOXpress. This may affect 
applications that require real-time responsiveness. 
Other models, such as YOLOv5 (FPS = 20.05) and 
YOLOv6 (FPS = 19.52), also exhibited fast processing 
speeds but still fell short compared to YOLOXpress in 
scenarios demanding stringent real-time performance.

Although YOLOXpress did not achieve the 
highest accuracy (0.6243 compared to 0.6755 for 
YOLOv8n), it still maintained a strong performance 
in object detection with an mAP of 0.1636, which 
was close to YOLOv8n (mAP = 0.1750). This finding 
indicates that YOLOXpress strikes a good balance 
between accuracy and processing speed, which 
is crucial for applications that require both rapid 
processing and high reliability. While YOLOv6 and 
YOLOv5 demonstrated smaller model sizes and faster 

Table 2. Results of the various ablation experiments
Component YOLO-v8 (a) YOLO-v8 (RepC3) (b) YOLO-v8 (RepConv) (c) YOLOXpress 

(RepC3 and RepConv) (d)
P 99.524 97.672 98.236 96.229
R 97.783 98.123 97.697 97.193
mAP 96.266 95.408 96.042 90.13
Parameter (million) 3.011 1.678 3.373 2.699
Model size 17.8 3.41 6.63 5.36
GFLOPs 8.2 4.6 9.3 7.6
Means of ACC 0.633 0.505 0.443 0.595
FPS 29.168 32.163 32.823 32.741
Abbreviations: ACC: Accuracy; AP: Average Precision; FPS: Frames Per Second; GFLOPs: Gigaflops mAP: Mean Average 
Precision; P: Precision; R: Recall; RepConv: Re-parameterization Convolution; YOLO: You Only Look Once.

Fig. 5. Feature map extraction images of the test 
models and the YOLO-v8n model 

Abbreviations: RepConv: Re-parameterization 
Convolution; YOLO: You Only Look Once

Fig. 6. Comparison chart between test models and the 
YOLO-v8n model (based on means of acc [accuracy], 

Frames Per Second [FPS], and model size) 
Abbreviation: RepConv: Re-parameterization 

Convolution
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processing speeds, they exhibited lower accuracy and 
mAP, which limits their effectiveness in scenarios that 
demand precise object detection.

With a model size of 5.1 MB, YOLOXpress 
delivered high performance and was also easily 
deployable on devices with limited memory, comparable 
to YOLOv5 (5.0 MB). This feature is crucial when 
deploying models on embedded devices or systems with 
constrained resources. While YOLOv8n and YOLOv6 
showed larger model sizes (16 MB and 49 MB, 
respectively), the increased model size may require 
more powerful hardware and impact the ability to deploy 
on devices with limited memory and computational 
resources. YOLOXpress achieved the lowest processing 
time at 5.92 ms on the Pytorch platform, demonstrating 
its fast processing capability, which is well-suited for 
real-time detection applications.

Fig. 7 illustrates the real-world testing results 
in three scenarios: (i) Long-range detection under 
foggy weather conditions and complex background 
objects, (ii) long-range detection with an overcast 
sky, and (iii) detection in an environment with 
numerous complex objects. From the three provided 
images, we were able to assess the performance of the 
YOLOXpress model under these scenarios as follows:

Fig. 7A (long range, small target size, foggy 
conditions): The model successfully detected the drone 
despite low lighting and fog, which reduced contrast. 
The confidence score was 0.53, indicating that the 
model detected the drone with relatively low certainty 
due to the challenging conditions and small target 
size. These results demonstrate that the model can still 
perform acceptably under unfavorable conditions.

Fig. 7B (long-range, overcast sky): In the 
presence of thick clouds, the model detected the drone 
with higher confidence, achieving a score of 0.69. The 
detection performance improved compared to the first 
image, possibly due to the enhanced contrast between 
the drone and the overcast sky, making the target easier 
to identify. These findings suggest the model performs 
well even in complex sky conditions with fewer 
interfering objects.

Fig. 7C (environment with many interfering 
objects): The model achieved the highest confidence 
score of 0.73, successfully detecting the drone 
despite the presence of numerous background objects 
(buildings and trees). This finding demonstrates the 
model’s robustness in handling complex environments 
with multiple potential sources of interference, 
particularly at close range. The successful detection 
in this scenario highlights YOLOXpress’s ability to 
handle visually complex scenes.

In conclusion, the YOLOXpress model exhibited 
strong performance across various conditions, from 
unfavorable weather (fog) and overcast skies to 
environments with significant visual clutter. However, 
low lighting and small target sizes still impacted the 
model’s confidence.

5. Conclusion
The YOLOXpress model proposed in this paper 

addresses the limitations of the YOLO-v8n model when 

Table 3. Comparison of experimental results
Parameter YOLO

-v8n
YOLO

-v6
YOLO

-v5
YOLO
Xpress

Means of ACC 0.676 0.572 0.555 0.624
FPS 18.02 19.52 20.05 23.44
Model size (MB)

Pytorch 5.9 49 5.0 5.1
Torchscript 11.9 16.5 10.1 10.1
Onnx 11.7 16.3 9.8 10.0

mAP (50-95)
Pytorch 0.1750 0.1064 0.1588 0.1636
Torchscript 0.1732 0.1066 0.1584 0.1632
Onnx 0.1732 0.1066 0.1584 0.1632

Process time per 
image (ms/im)

Pytorch 8.5 7.38 10.67 5.92
Torchscript 7.11 7.89 7.63 5.71
Onnx 137.24 178.43 146.65 119.82

Abbreviations: ACC: Accuracy; FPS: Frames per second.

Fig. 7. Experimental results of the YOLOXpress 
model on the Jetson Orin embedded system under 

real-world conditions: (A) long-range detection with 
a small target size and foggy weather, (B) long-range 
detection with an overcast sky, and (C) detection in an 

environment with numerous complex objects

C

BA
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deployed on low-end hardware devices, specifically 
for detecting small objects, particularly in UAV 
detection and alert systems. By prioritizing a small 
model size, fast processing speed, and maintaining 
an acceptable level of accuracy, YOLOXpress can 
be more easily deployed in resource-constrained 
environments. Specifically, the C2f module in the 
Backbone and the C2f module in the Neck can be 
replaced with the RepConv and RepC3 modules to 
reduce the number of computations while preserving 
the ability to extract object features. This modification 
reduces the model size without significantly affecting 
accuracy. Replacement and comparative experiments 
conducted on the TIB-Net dataset have provided 
specific metrics. Compared to the original model, the 
YOLOXpress model improved FPS and Model size by 
12.25% and 69.96%, respectively. The parameters and 
computations were reduced by 10.36% and 7.32%, 
respectively.

In summary, the changes made to YOLOXpress 
compared to YOLO-v8 demonstrate that the model 
is suitable for deployment on low-end devices while 
ensuring real-time UAV detection. However, replacing 
the C2f module with the RepConv and RepC3 
modules has resulted in a reduced accuracy compared 
to the original model. The average accuracy of the 
YOLOXpress model decreased by 6% compared to 
the original model. This reduction is minimal, and 
the accuracy remains within an acceptable range. 
Experiments on our custom-built dataset indicate 
that the recall rate decreases when more complex 
objects are in the background. Future work will 
improve accuracy and detection capability in complex 
background conditions.
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