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Abstract

Representation of sensor data in the form of time series is a crucial aspect of numerous related tasks such as comparison, 
reduction, clustering, and classification. Time series representation methods included in most programming languages/
integrated development environments support dimensionality reduction, data preprocessing, and feature extraction 
for time series data, as do several normalization techniques. This research study focused on 14 different methods of 
dimensionality reduction from the TSepr (R Studio) package on eight different time series, which are collections of 
sensor data of varying lengths. The similarity of the reduced time series and the original time series is compared using 
a modified version of dynamic time warping with time alignment measurement. These methods are further combined 
with the Gaussian kernel function to normalize the distance between variously aligned series. The results showed that 
perceptually important points (PIP) and piecewise linear approximation (PLA) were found as the best methods for 
TS reduction with a minimum deviation (error term) as low as 5 – 12%. The results also indicate that PIP performs 
significantly differently compared to seasonal decomposition, while there are no significant differences between PIP 
and the other methods (PLA, FEACLIPTREND, and FEACLIP). In addition, this research study demonstrated the 
development of an interactive web-based application in which time series are stored in csv files, and the distance 
between them is calculated through the chosen reduction method.
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1. Introduction

Many conventional waveform processing 
techniques can be used for a time series since it can 
be seen as a waveform when graphically displayed. 
Accelerometer data consists of three channels (x, y, 
and z) and is collected at a high sampling rate. This 
leads to a large amount of data being collected with 
close, continuous values against increasing unit time. 
For example, data collected at 100 Hz sampling data 
generates 6000 data points per minute per channel. 
Handling such large data often requires larger 
computational costs and storage, which makes the task 
challenging to process in real time. Raw accelerometer 
signal contains noise caused due to physical sensor 
inaccuracies and external vibrations. By reducing 
the dimensionality of this data, noise reduction and 

smoothening of the data make it less sensitive to noise. 
In this study, accelerometer data collected for road 
abruptions is driven in the form of time series, and 
dimensionality reduction techniques are presented, 
using 14 different methods of dimensionality reduction.

Processing accelerometer data, which consists 
of three channels (x, y, z) collected at high sampling 
rates, presents significant challenges due to the sheer 
volume of data generated – 6000 data points per 
minute per channel at 100 Hz sampling frequency. 
This large dataset can lead to increased computational 
costs and storage requirements, complicating real-
time processing efforts (Hussein et al., 2024). The 
raw signals are often contaminated with noise 
from sensor inaccuracies and external vibrations, 
necessitating effective noise reduction techniques to 
enhance data quality. To address these challenges, 
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dimensionality reduction techniques are employed, 
which help in reducing the data’s complexity while 
preserving essential information (Juliusdottir, 2023). 
In this study, 14 distinct methods of dimensionality 
reduction are explored, facilitating the smoothening of 
data and making it less sensitive to noise. In addition, 
a symbolic approach is introduced to represent the 
data streams in a reduced space, transforming real-
valued data into a string of symbols, which aids in the 
efficient processing of time series data. By integrating 
these methodologies, the study aims to improve the 
handling of accelerometer data collected during road 
abruptions, ultimately enhancing real-time analysis 
capabilities (Juliusdottir, 2023).

A Time series, if represented graphically, can 
be viewed as a waveform and hence supports many 
traditional methods of waveform processing. Time 
series are collections of data points recorded against 
timestamps. Sensor data are prototype examples 
of time series. The series under study consists of 
accelerometer data generated using a smartphone 
sensor. In general, a time series, in its simplest form, 
can be defined as follows in Eq. (1)

TS = [(dpt1, t1), (dpt2, t2), (dpt3, t3)… (dptn, tn)] (1)

Where each dpt is a data point at t is a time at 
which dpt is measured.

Classification of time series representations 
has been performed by several researchers (Biemann 
& Masseglia, n.d.) as shown in the diagram below 
(Fig. 1). Non-data adaptive time representation refers 
to the approximation of a time series based on the 
local properties of the dataset. The data-adaptive 
representation chooses a common representation 
from the original time series such that while 
reconstructing the original time series from the 
reduced one, the global error is minimized. Model-
based representations use a statistical model to 
represent the characteristics of time series (Wang 
et al., 2010).

The selection of the 14 dimensionality reduction 
methods is based on their ability to effectively 
manage high-dimensional time series data while 
preserving essential features. The implementation of 
distance functions, particularly the combination of 
dynamic time warping (DTW) and time alignment 
measurement (TAM), enhances the assessment 
of similarity between time series. Furthermore, 
addressing the statistical significance of results with 
a heat map ensures the reliability and applicability 
of findings, paving the way for improved analysis 
and interpretation of time series data across various 
domains. The methods used to reduce the time series 
considered in this research study are described in the 
following section.

1.1. Non-data Adaptive Methods
a. Piecewise aggregate approximation (PAA): The 

default algorithm of PAA uses the mean as the 
aggregation function. This method uses mean, 
max, min, sum, or any other aggregate function 
passed by the user. The PAA approximation is 
given by Eq. (2) below (Ines Silva & Henriques, 
2020).
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b. Discrete wavelet transform (DWT): This 
function computes discrete wavelet coefficients 
from a given time series. The parameter level 
determines the number of coefficients, whereas 
the filter option provides types of wavelet filters 
(for example, haar, d6, and d2). The DWT 
divides signals into details and approximate 
parts. The transform contains an insignificant 
noise component (details) that can be removed 
or filtered out using two basic filters, thresholds, 
and/or wavelet types. The Filter parameter 
defines the basic waveform matching with the 
shape of the original waveform to be filtered out. 
DWT is given as follows in Eq. (3)
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c. Discrete Fourier Transform (DFT): DFT is the 
primary transformation function used in digital 
signal processing. According to the mathematical 
formula, the discrete Fourier transform converts 
N discrete-time samples to the same number of 
discrete frequency samples as given by equation (4)
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d. Discrete Cosine Transform (DCT): DCT is the 
technique for converting a signal into elementary 
frequency components. DCT represents the input 
signal as a linear combination of weighted basis 
functions related to the frequency component. 
DCT can be mathematically represented as given 
below in Eq. (5):
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e. Simple moving average (SMA): A SMA is a 
statistical method that calculates the mean of 
subsets of the dataset. The function returns a time 
series of length: length=length (TS)-order+1, 
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where the order is the parameter to the function, 
given by Eq. (6)
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f. Perceptually important points (PIP): PIPs are 
identified by extracting dominating data points 
from the shape of the time series (Jiménez et al., 
2016). The function accepts the number of PIPs 
to be identified and returns them with or without 
the time stamp value as specified by the user.

1.2. Data Adaptive Methods
1. Symbolic aggregation approximation (SAX): 

This method was first proposed by Lin et al. 
(2000) and extends the concept of piecewise 
approximation. SAX is a symbolic representation 
of univariate time series, allowing dimensionality 
reduction with low storage requirements. It 
is applicable in motif discovery, data mining, 
and large-scale data processing (Camerra 
et al., 2010). SAX converts a time series TS of 

length n into a string of arbitrary length where 
len(string)<<n. To construct the alphabet, SAX 
uses the formula given in Eq. (7).

( )1* * ,  , *    .     β β−= ∈ j ji alpha j iif c i  (7)

Then, SAX locates the distance calculation in 
the lookup table of the N X N matrix to construct the 
alphabet.
2. Piecewise linear approximation (PLA): The 

PLA is a method of fitting a non-linear objective 
function to an approximation function by adding 
additional variables and constraints (Lin et al., 
2003). The function converts TS to a specified 
number of points using the PLA algorithm. The 
overall piecewise linear function is given by 
Eq. (8).
Let x0, x1, x2… xn where n is the number of 

subintervals.
Hence, each subinterval is defined as a linear 

function.

fi (x) = mi.(x-xi) + bi (8)

Fig. 1. Classification hierarchy of time series representation
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1.3. Model-Based Methods
1. Mean Seasonal Profile: This method computes 

the mean seasonal profile of the time series. The 
length of the representation can be specified by 
the freq parameter.

2. Model-based seasonal representations based 
on linear additive models: linear models or 
generalized additive models combine the 
properties of generalized linear models and 
additive models. These methods extract linear 
coefficients from a given time series depending 
upon the frequency assigned by the user. In the 
GAM model, Y variable depends linearly on the 
unknown smoothing function of certain variables. 
GAM is given by the following formula: Eq. (9),

( ) ( )
1

  (  φ
=

= ∑

n

p p
p

f x xΦ  (9)

3. Exponential smoothing seasonal coefficients: 
This function extracts exponential smoothing 
seasonal coefficients from the time series. This 
method is suitable for data that do not show any 
seasonal pattern or trend. Eq. (10) represents 
the mathematical formulation of exponential 
smoothing.

St = α.Xt + (1-α).St-1 (10)

1.4. Data Dictated Methods
1. Feature extraction from clipped representation: 

This method computes features of the time series 
using bit-level clipped representation. It extracts 
8-bit features from the data. This approach is a 
sustainable high-performance outlier detection 
method (http://Acmbulletin.Fiit.Stuba.Sk/
Vol10num2/Vol10num2.Pdf, n.d.).

2. Feature extraction from the trending 
representation: similar to the clipped 
representation of a time series, this function 
extracts bit-level features but with trending. The 
user specifies the number of pieces and forms 
every piece; two features are extracted.

3. Feature extraction from clipped and trending 
representations: In this method, clipping and 
Trending both bit-level representations are 
combined for time series feature extraction.
To standardize the raw data series collected, 

normalization of time series, followed by windowing and 
clipping, are implicated in the proposed methodology. 
The normalization method of min-max normalization is 
used in this research study and is given in Eq. (11):
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2. Related Work
Any collection of a series of data points that is 

observed for different points of time is a time series. 
The representation of sensor data as time series is 
essential for various tasks, including dimensionality 
reduction and classification. Recent studies have 
explored multiple methods for effectively reducing the 
dimensionality of time series data, highlighting their 
performance and applicability. Table 1 highlights some 
recent work in this domain.

In time series, data correlation within adjacent 
points in time makes time series analysis a special field 
of interest with special statistical features. This time 
correlation forms many mathematical and statistical 
questions with various applications in diverse fields. 
For example, data points collected by earthquake 
sensors, data points collected by temperature sensors, 
or brain waves in electroencephalogram. Time 
series patterns pose certain diverse applications of 
time series. In this section, we will concentrate on 
one special type of time series that is generated by 
accelerometer data signals. The accelerometer, as the 
data recording instrument, records vertical violation 
data at a frequency of 50 Hz. The general problem of 
interest is to classify or distinguish different types of 
waveforms generated by this accelerometer in case 
of different events observed. There are many features 
generated from this time series, for example, amplitude 
ratios, threshold of vibration, maximum amplitude, 
and so on. Along with these time domain features, 
there are several frequency domain features like 
spectral analysis of variance, septal coefficients, and 
linear prediction coefficients. In time series analysis, 
shape analysis is another area of interest. The shape 
appearance of the time series changes completely with 
varying sampling rates or with varying frequency and 
different numbers of frames of sample. Time series can 
differ in degrees of smoothness (Bairagi, 2018).

Moving averages and auto regression are 
some methods used to represent time series and 
used to predict time series future values. However, 
for recording events data with accelerometer, these 
techniques are not very useful as they are based on 
previous values in the time series (Wang et al., 2010). 
Autocorrelation and cross-correlation are certain 
methods that can be used for the comparison of 
similarity between two-time series. As described in the 
later section, electronic signal comparison techniques 
like DTW, SAX distances, Correlation distances, and 
Fourier distances are some distance measures to find 
out the difference between two or more time series (De 
Oliveira Marques et al., 2022).

Although the R programming language is a 
popular tool for statistical research, there are few related 
research papers dedicated to a specific package or 
functionality in R. The TSrepr basis functions are also 
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available for C++ language integration (Eddelbuettel 
& François, 2011) and hence open up many wide areas 
of research in time series. However, modern time series 
data with minor time intervals, such as accelerometer 
or sensor data, need to be studied further. Several of the 
time series considered by various researchers include 
electricity consumption and sales forecasting. Time 
series analysis in R programming with autoregressive 
integrated moving average (ARIMA) model has 
been employed to forecast electricity usage. Linear 
regression and ARIMA are used for mining time series 
for the women’s expenditure dataset (Tanwar & Kakkar, 
2017). The authors stated that the prediction accuracy 
is similar for both prediction models. For high-voltage 
load forecasting, Matsila and Bokoro (2018) used 
R-visualization techniques for time series and linear 
progression. In the study by Wang et al. (2010), all 

the methods are compared on the basis of similarity 
measures and step patterns for parameter tuning. 
Ali et al. (2019) review numerous methods for the 
visual analysis of time series data, such as clustering, 
classification, and other distance matrix computation 
methods. For a larger time series, (Camerra et al., 2010) 
paper defines a novel data structure called iSAX for 
the SAX method of aggregate approximation, which 
is described by the TSrepr package. The repository 
(Laurinec, 2018) provides the updated open-source 
code and documentation for the TSrepr package. The 
classification accuracy of all methods of the TSrepr 
package with aggregation and clustering methods 
was assessed in a previous study (Laurinec & Lucka, 
2016) based on robust linear regression, exponential 
smoothing, and other adaptive and model methods 
from the package. The authors have implemented 
these methods for forecasting electricity consumption. 
Another major area of study for time series mining is 
in the area of motif discovery. The package TSMining 
(Lin et al., 2003) also implements various functions 
of TSrepr, but the goal is toward motif discovery 
from time series mining rather than dimensionality 
reduction of time series data.

For the multivariate time series, the alignment 
and similarity assessment (MTASA) framework 
discussed in a study by Tonle et al. (2024) 
integrates multiple steps of time series similarity 
assessment, including feature representation, 
alignment, and similarity measurement. With 
digital signal processing techniques, such as cross-
correlation and convolution, MTASA enhances the 
alignment of time series data, addressing challenges 
related to noise and temporal misalignments. The 
implementation of a multiprocessing engine further 
optimizes computational resources, making the 
framework suitable for large-scale datasets. This 
method shows promise in applications such as 
environmental monitoring and agricultural studies, 
where multivariate data is prevalent. For the similarity 
search methods, another research study (He et al., 
2023) indicates that similarity measures should not 
only focus on direct comparisons but also consider the 
underlying structures and patterns within the data. This 
adaptability is crucial in fields such as engineering, 
where degradation curves of similar systems need to 
be compared accurately for predictive maintenance.

On the basis of the evidence from these previous 
studies, we observed unexplored research on time 
series representation, suggesting the need for additional 
studies in the domain of time series reduction and 
distance calculation methods. Section IV of this paper 
explores multiple methods of distance calculation, 
whereas Section 5 presents the methodology of the 
work. The next section describes the data set used in 
this research study.

Table 1. Sensor data as time series and applications
Research study Insights 
Hussein et al., 
2024

The authors propose a novel approach 
using early exit classifiers that can 
make accurate inferences with partial 
sensor data, significantly reducing 
energy usage while maintaining 
accuracy. Evaluations across six 
datasets demonstrate that the proposed 
method can achieve energy savings 
of 50 – 60% without compromising 
classification accuracy.

Meng et al., 
2024

A dimension reduction method to 
reduce scale for time series and analyze 
the correlation between multi-source 
sensors is proposed and carried out on 
an industrial excavator dataset to verify 
the effectiveness and preponderance of 
the method.

He et al., 2023 In this paper, a double mean 
representation method, symbolic 
aggregate approximation based 
on double mean representation 
(SAX-DM), was proposed for time 
series data.

Wang et al., 
2023

Wang et al., as discussed by the 
authors, proposed a multivariate 
time-series unsupervised domain 
adaptation (MTS-UDA) method to 
reduce the domain discrepancy at both 
the local and global sensor levels.

Ashraf et al., 
2023

In this article, the authors present 
twelve different dimensionality 
reduction algorithms that are 
specifically suited for working with 
time-series data and fall into different 
categories, such as supervision, 
linearity, time and memory complexity, 
hyper-parameters, and drawbacks.
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3. Dataset Description
The dataset used in this research study was 

collected by an accelerometer sensor mounted on a 
two-wheeler vehicle that travels on different types 
of roads, namely, a bituminous road, a concrete road, 
paved, and unpaved road (Fig. 2A-D, respectively). 
Smartphones’ built-in triaxial accelerometer sensors 
are used to collect Z-axis readings, which are vertical 
acceleration readings against gravitational force. The 
roughness and surface texture of the road are reflected 
in accelerometer readings. The frequency of data 
collection was set to 50 data points per second.

A testbed was developed to aid data collection 
in the development and testing of this research. Fig. 3 
shows the vertical placement of the smartphone with 
the sensors on a two-wheeler. The data collected were 
in the raw format, preprocessed for missing values, and 
normalized via the min–max normalization technique. 

Previous studies have shown that the collection of 
accelerometer sensor data is not affected by the speed 
of the vehicle (Anand et al., 2020).

4. Distance Function
Viewing the statistical properties of time series 

as distance measures provides a powerful approach to 
understanding the behavior and relationships between 
time series data. Mahalanobis distance, measures of 
divergence, and higher-order statistics provide valuable 
insight into the central tendency, variability, shape, and 
time dependencies of time series. Careful consideration 
of data pre-processing, dimensionality, and complexity 
is essential for a meaningful application of statistical 
properties as distance measures. Overall, the inclusion of 
statistical properties in the time series analysis contributes 
to more accurate and robust analysis in different areas.

The distance functions used in this research 
study are DTW combined with TAM. Correlation-
based and compression-based dissimilarity are a few 
more commonly used functions for time series data 
(Giorgino, 2009; Salvador & Chan, n.d.; Sharma et al., 
2020; Singh & Meena, 2009). Eqs. 12 – 15 show the 
mathematical formulation of these distance functions 
(Montero & Vilar, 2014).

Dynamic Time Warping Distance

D i j min
D i j
D i j
D i j
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However, using the raw distance functions is 
not always guaranteed to produce the best results. 
The technique of collecting local neighborhood data 
by converting the distance to a Gaussian kernel and 
giving more weight to closer neighbors, can increase 
the distinctiveness of the similarity measure and 
increase the classification accuracy.Fig. 3. Placement of smartphone

Fig. 2. (A-D) Types of roads

DC

BA

https://dx.doi.org/10.6977/IJoSI.202504_9(2).0006


DOI: 10.6977/IJoSI.202504_9(2).0006
A. Jawale, A.K. Tripathy/Int. J. Systematic Innovation, 9(2), 60-73 (2025)

66

4.1. Understanding Kernel Methods
Machine learning for non-linear computing 

often employs a class of approaches known as kernel 
methods. They use the idea of feature mapping to add 
dimension to the original data, which could make 
linear processes more efficient (De Oliveira Marques 
et al., 2022). Kernel approaches prevent the direct 
calculation of the changed data points while enabling 
efficient calculations with a kernel function that 
automatically determines this feature mapping.
a. Kernel Functions:

The kernel function is the basic unit of kernel 
distance calculation. A kernel is a set of mathematical 
functions that accepts the input and converts it into the 
required type of output. For example, given two input 
vectors, a kernel function returns the inner product in 
the new feature space. The similarity metric between 
the changed data points and this inner product is 
identical. Typical kernel operations include:
1. Linear Kernel: The linear kernel, which is the dot 

product of the input vectors, represents the initial 
input space. The linear kernel function is defined 
as

k(xi, x) = xi.x (16)

2. Polynomial Kernel: By increasing the dot 
product to a certain level, the polynomial kernel 
enables the capture of polynomial correlations 
between data points.

k (xi, x) = (xi.x)e (17)

3. Gaussian – Radial Basis Function Kernel: The 
Gaussian kernel uses the radial basis function 
to calculate similarity. It gives closer locations 
more similarity and decreases with distance.

k x x ei

x xi

,( ) = − − 2

22σ  (18)

4. Sigmoid Kernel: The sigmoid kernel models 
sigmoidal interactions between data points by 
capturing similarity based on the hyperbolic 
tangent function.

k(xi, x) = tanh (cxi x + h) (19)

b. Calculation of the Kernelized Distance:

We use the kernel trick concept to determine the 
kernel distance between two data series. We can directly 
compute the kernel function values between the input 
vectors instead of explicitly computing the feature 
vectors and computing distances in transformed space. 
Without explicitly computing the changed vectors, the 
kernel distance captures the disparity between data 
points in the changed feature space.

In this research study, to calculate kernel 
distance, we use the equation of Gaussian kernel as 
illustrated in Eq. 18.

5. Methodology
This research study focused on the accuracy of 

the dimensionality reduction techniques of the TSrepr 
package. 8 different length time series presenting Z – 
Acceleration of smartphone accelerometer data during 
different vehicle travels are considered for the analysis. 
These data are normalized to bring all the data points 
to the same scale and range of values. The various 
dimensionality reduction methods listed in Section 1 
are implemented on this dataset. The resulting reduced 
dataset series is compared with the original series 
for similarity using the normalized distance of the 
DTW+TAM method. The distance between two series 
is given by the normalized cumulative distance. This 
method is highly adaptable and can be applied to a 
wide range of domains, including finance, healthcare, 
and environmental science.

The combination of DTW and TAM allows 
a comprehensive measure of distance calculation 
that measures both features of time series, temporal 
alignment, and magnitude difference. Eq. 20 shows 
the mathematical formulation of combining DTW and 
TAM.

Distance(x,y) = α.DTW (x,y) + (1-α).TAM (x,y) (20)

α is a weight parameter that can be adjusted 
according to the weightage to be assigned to the 
respective factor. To ensure appropriate scaling of the 
distance metric, a normalization followed by Gaussian 
kernel-based distance calculation is applied Eq. (21).

k x x ei j,( ) = −
−

1

2

22

ω
σ  (21)

ω represents the normalized distance of two-time 
series as given in Eq. 20; σ is a parameter that controls 
the width or scale of the Gaussian kernel.

The process of combining and normalizing data 
has the potential to enhance the accuracy of similarity 
assessments, thereby improving the performance of 
applications such as clustering, classification, and 
anomaly detection. Fig. 4 shows the sequence of steps 
of this methodology.

When the two series are the same, the normalized 
cumulative distance between them is zero. Any 
deviation from the value of zero is considered an error 
term. In Section 5 of this paper, we have presented the 
difference between the original series and the reduced 
series as a result of our experimental work.

In addition, the flexible integration of similarity 
measurements into various algorithms using the 
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Gaussian kernel improves their performance and 
enables more effective data analysis and decision-
making. This research study attempts to solve this 
problem by following a two-step process, namely, 
calculating the distance between two-time series and 
applying a kernel function to map this distance onto 
a separable plane. Step 1 includes calculation of 
the DTW and TAM in normalized form, and Step 2 
implements the Gaussian kernel function, as discussed 
in the above section.

Furthermore, this study presents an interactive, 
integrated application to improve the usability of 
distance calculations for exploring and analyzing 
time series data. Users can input time series datasets, 
preprocess the data, carry out reduction activities, 
and interactively visualize the outcomes using the 
program. The application will make it simple for users 
to extract useful insights from their time series data by 
offering an intuitive user interface. The algorithm for 

creating the application is given below.

6. Results and Discussion
The combination of alignment cost (DTW) 

and magnitude difference (TAM) provides a 
comprehensive measure of similarity, taking into 
account both temporal alignment and differences in 
values. The measure can be adjusted according to 
specific needs using a weighted average of distances. 
The normalization of the Gaussian kernel ensures that 
the distance metric is appropriately scaled, facilitating 
its interpretation and comparison across diverse 
datasets.

The Gaussian Kernal makes DTW distance in 
the form of a positive semi-definite (PSD) matrix, a 
symmetric matrix with non-negative eigenvalues. The 
PSD matrix is defined as

M ϵ L(V),where M is symmetric and vT Mv>0 ∀ v ∈V
 (22)

The PSD matrix ensures that the SVM algorithm 
will terminate at a global optimum, which leads to a 
more interpretable and reliable solution.

In addition, it improves the detection of 
similarities by identifying similarities that may go 
unnoticed when relying solely on a single measure.

Table 2 shows the tabulated results of all the 
normalized cumulative distances between the reduced 
series and the original series. This is the error term 
given by |0-NormDist|. Table 3 shows the five methods 
with the minimum error term calculated using the 
formula given in Eq. (23).

Percentage Error Term = |0-NormDist|*100 (23)

The PIP, PLA, seasonal decomposition 
(SEAS), feature extraction and clipping for trend 
(FEACLIPTREND), and feature extraction and 
clipping (FEACLIP) methods are advanced 
strategies for dimensionality reduction in time 
series analysis. Let X ∈ RnXm represents a time 
series with n observations and m features. The goal 
of dimensionality reduction is to transform X into 
a lower dimension representation Y ∈ RnXk where 
k<m. The understudied methods aim to retain certain 
statistical features of a time series data with reduced 
dimensionality, as described below.

Fig. 5 shows the results of the heatmap 
visualization. Fig. 6 shows a visualization of the 
original time series and reduced time series. The 
PIP, PLA, SEAS, FEACLIPTREND, and FEACLIP 
methods yield the best results by considerably 
reducing the dimensionality but keeping the 
original features intact since the distance between 
the original and reduced time series is significantly 

Algorithm: Distance Calculation
Define the Gaussian kernel function.
Input: x (input value)
Output: Gaussian kernel value using the input value and 
a fixed sigma value

( ),

( 1, 2)
( 1, 1)
( 2, 1)
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− −
− + − −
 − −

i j
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D i j
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, 
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221
ω
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−

∆ = −Difference e

Output: return (∆)

Algorithm: Application
Import the necessary libraries: shiny and TSdist.

the UI:
Create a fluid page.

Define the server
Extract the data from the uploaded CSV files.
Convert the data into numeric vectors.
Define Time series Reduction Methods
reduced_ts <‑ reduced_timeseries (methodname (), 
original_ts)
Diff <‑DTW+TAM (original_ts, reduced_ts)
Diff ‑> 0 indicates effective reduction without loss
Redirect output to server
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lower (ow – 20%), as shown in Table 3. The 
dimensionality reduction procedure is presented in 
Table 4.

We conducted a paired t-test to verify the results 
of the differences of the top five methods. The results 
obtained are listed as
i. PIP versus PLA: Statistic: −0.216, p-value: 

0.835: No significant difference between PIP and 
PLA.

ii. PIP versus SEAS: Statistic: 2.423, p-value: 0.046: 
There is a statistically significant difference 
between PIP and SEAS at the 0.05 significance 
level.

iii. PIP versus FEACLIPTREND: Statistic: −1.454, 
p-value: 0.189: No significant difference between 
PIP and FEACLIPTREND.

iv. PIP versus FEACLIP: Statistic: −1.437, p-value: 
0.194: No significant difference between PIP and 
FEACLIP.
The results indicate that PIP performs 

significantly differently compared to SEAS, while 
there are no significant differences between PIP and 
the other methods (PLA, FEACLIPTREND, and 
FEACLIP).

Fig. 5 shows a heat map visualization of the 
percentage error term. The color scale of light yellow 
to green shows minimum error terms to maximum 
error terms. Fig. 6 shows a visualization of the time 
series original, PAA, SMA, and PIP.

The dimensionality reduction methods exhibit 
substantial potential for real-world applications 
and integration into existing systems. These 
techniques effectively reduce the dimensionality 
of time series data while preserving the integrity 
of original features, which is crucial for enhancing 
interpretability, efficiency, and performance across 
various domains.

Fig. 7 shows the interactive web application used 
to compare two-time series with four different distance 
measures.

Fig. 4. Methodology flow

PIP (Principal Information Preservation Y=XW, where W is projection matrix such that
( ) 2

FmaximizeVar Y ,W =1

PLA (Piecewise Linear Approximation) ( )
1

1

.1
+

=

= ∑ j j

k

i j t t i
j

Y a t

where aj is coefficient of linear segment, 1 is an indicator function to check 
if ti falls within a range

SEAS (Seasonal Decomposition) X (t) = T (t) + S (t) + R (t)
where T: Trend, S: Seasonality and R: Residual

FEACLIPTREND (Feature Extraction and 
Clipping for Trend)

Y=Clip (X, ϵ)
where ϵ is threshold to determine the significant feature to be retained

FEACLIP (Feature Extraction and Clipping Y=Extract (X)∩Clip (X,ϵ)

Fig. 5. Heat map representation of the distance 
between original and reduced time series
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Table 2. Experimental results
a. Non-data adaptive methods

Normalized cumulative distance between original and reduced time series
Time series LEN SMA RDWT DFT DCT PAA PIP
TS1 101 0.0538 0.06276 0.62946 0.15076 0.05339 0.06438
TS2 101 0.21127 0.26822 0.89585 0.43408 0.20551 0.16026
TS3 101 0.05082 0.05375 0.46697 0.12836 0.05137 0.05579
TS4 843 0.12247 0.4158 1 0.993 0.12296 0.1109
TS5 1764 0.13563 0.32768 0.99997 0.67835 0.12666 0.10136
TS6 843 0.12247 0.4158 1 0.993 0.12296 0.1109
TS7 526 0.05692 0.94684 1 1 0.05432 0.03923
TS8 2000 0.12471 0.19542 0.99858 0.67039 0.13698 0.09614

b. Data adaptive methods
Normalized cumulative distance between original and reduced time series

Time series LEN PLA
TS1 101 0.042641
TS2 101 0.213402
TS3 101 0.039116
TS4 843 0.416696
TS5 1764 0.527422
TS6 843 0.416696
TS7 526 0.117633
TS8 2000 0.198984

c. Model-based methods
Normalized cumulative distance between original and reduced time series

Time series LEN SEAS LM GAM EXP
TS1 101 0.05153 0.051345 0.259189 0.179786
TS2 101 0.436253 0.436253 0.996679 0.443483
TS3 101 0.053389 0.053389 0.228889 0.196029
TS4 843 0.563937 0.563878 1 0.441416
TS5 1764 0.53348 0.533461 1 0.144275
TS6 843 0.563937 0.563878 1 0.441416
TS7 526 0.059751 0.05981 0.998337 0.299404
TS8 2000 0.16548 0.16548 0.99447 0.314765

d. Data‑dictated methods
Normalized cumulative distance between original and reduced time series

Time series LEN FEATREND FEACLIP FEACLIPTREND
TS1 101 0.060922 0.060967 0.563687
TS2 101 0.205051 0.205281 0.999998
TS3 101 0.06234 0.062194 0.408944
TS4 843 0.258353 0.254489 1
TS5 1764 0.163569 0.162071 1
TS6 843 0.258353 0.254489 1
TS7 526 0.062134 0.061691 0.999569
TS8 2000 0.080842 0.08054 1
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Table 3. Five best methods with the percentage of error term
% Error between original and reduced time series

TS‑LEN PIP (%) PLA (%) SEAS (%) FEACLIPTREND (%) FEACLIP (%)
TS1-101 5.34 5.38 6.44 6.09 6.10
TS2-101 20.55 21.13 16.03 20.51 20.53
TS3-101 5.14 5.08 5.58 6.23 6.22
TS4-843 12.30 12.25 11.09 25.84 25.45
TS5-1764 12.67 13.56 10.14 16.36 16.21
TS6-843 12.30 12.25 11.09 25.84 25.45
TS7-526 5.43 5.69 3.92 6.21 6.17
TS8-2000 13.70 12.47 9.61 8.08 8.05

Table 4. Reduction percentage in size
TS‑LEN PIP (%) PLA (%) SEAS (%) FEACLIPTREND (%) FEACLIP (%)
TS1-101 89.11 89.11 90.10 88.12 92.08
TS2-101 89.11 89.11 90.10 88.12 92.08
TS3-101 89.11 89.11 90.10 88.12 92.08
TS4-843 15.84 89.11 16.83 88.12 92.08
TS5-1764 79.00 98.70 79.12 98.58 99.05
TS6-843 95.18 99.38 95.24 99.32 99.55
TS7-526 93.59 98.70 93.71 98.58 99.05
TS8-2000 61.79 97.91 61.98 97.72 98.48

Fig. 6. Piecewise aggregate approximation, simple moving average, and perceptually important points visualization 
with original time series
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Fig. 7. Web Application for distance calculation

The purpose of this Shiny app, titled “Time Series 
Distance Calculator,” is to assist users in uploading 
two-time series datasets, implementing a selected 
reduction method, and computing the similarity 
distance between them using a combination of DTW 
and Time Asynchronous Matching (TAM) distances, 
and presenting the results in a visual format.

The application design uses Shiney framework in 
R programming language, combined with a reactive 
programming model for real-time updates. The 
application can be accessed through Shiney Server or 
a browser.

This application is beneficial for individuals 
engaged in the analysis of time series data who require 
a means of assessing the resemblance between two 
series. This interface is valuable in domains where 
time series analysis holds significance. Some of the 
use cases for the potential use of this application are 
Market Data Comparison, Portfolio Management, 
Disease Progression Monitoring Economic Indicators, 
and Social Trends Analysis.

7. Conclusion and Future Scope
This research study considered 14 different 

methods of dimensionality reduction for time series 
from the TSrepr package in the “R” programming. 
The basis for comparison is the similarity of the 
reduced time series with the original time series. The 
results revealed that the PIP and PLA methods reduce 
the dimensionality of the time series by 90 – 95%. 
Furthermore, by comparing these time series on the 
basis of the combined warping path and magnitude, 
a novel method of time series similarity search is 
presented. In the future, we wish to explore other 

methods of the TSrepr package for dimensionality 
reduction of multivariate time series.

8. Limitations
This study primarily focuses on univariate 

time series, which limits the generalizability of the 
findings to multivariate time series data, a common 
scenario in real-world applications. Furthermore, 
the basis for comparison is the similarity between 
the reduced and original time series, which may 
not account for other important aspects, such as 
preserving specific patterns or trends relevant to 
multiple domains.
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