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Abstract 

Atherosclerotic disorders, such as peripheral artery disease (PAD), have a significant negative impact on patient outcomes. 

Inadequate treatment and poor detection rates can result in cardiovascular complications and limb loss. There is great 

promise for improving the detection and treatment of PAD and other medical disorders through machine learning (ML) 

and artificial intelligence (AI) techniques. This paper highlights the use of field-programmable gate arrays (FPGAs) and 

application-specific integrated circuits (ASICs) to implement the fundamental ideas of AI and ML, specifically in the 

treatment of PAD. It emphasizes how these technologies can enhance drug selection, improve patient care, and refine 

disease phenotyping. This paper also describes how the integration of AI and ML with FPGA and ASIC technology can 

provide accurate and effective solutions to complex medical challenges, representing a significant breakthrough in 

medical analytics.  

Keywords: Application-Specific Integrated Circuits, Field-Programmable Gate Arrays, Machine Learning, Peripheral 
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1.  Introduction 

The cardiovascular condition known as 

peripheral artery disease (PAD) is caused by 

atherosclerosis, which restricts blood flow to the 

arteries and surrounding tissues (Campia et al., 2019; 

Criqui et al., 2015; Nordanstig et al., 2020; Rafnsson 

et al., 2020). After coronary artery disease and stroke, 

PAD is now the third most common atherosclerotic 

cardiovascular disease in terms of patient population 

(Criqui et al. 2015; Olin, 2000; Venkatesh et al., 2017). 

The most common symptom of PAD is intermittent 

claudication, an ischemic pain that arises when 

working leg muscles do not receive enough oxygen 

(Schorr et al., 2013). Over time, sedentary behavior 

tends to increase in PAD patients. Fig. 1. shows the 

difference between a normal artery and an artery with 

plaque. 

 
Fig. 1.   Normal artery and artery with plaque. (Reproduced 

from Dr. Abhilash, 15 December 2016) 

 

Furthermore, functional impairment usually 

occurs before the diagnosis of PAD, and silent, 

undiagnosed PAD is linked to worse outcomes 

compared to intermittent claudication (Thrall et al., 
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2018). It was estimated that more than 237 million 

adults aged 25 and older had PAD over the past decade, 

with prevalence sharply rising with age (Lareyre et al., 

2023). Epidemiologic research also indicates a marked 

rise in the prevalence of PAD, particularly in low- and 

middle-income nations, suggesting the potential for a 

widespread PAD pandemic (Criqui & Aboyans, 2015). 

Treatments that are frequently employed include 

medication, surgery, and lifestyle changes; however, 

these may cause serious side effects and may not be 

suitable for everyone (Venkatesh et al., 2017). PAD 

risk is strongly associated with traditional 

cardiovascular risk factors, such as diabetes, smoking, 

and advanced age (Criqui & Aboyans 2015) 

Historically, PAD has received less attention than 

coronary artery disease and stroke, but in recent years, 

more focus has been paid to it, leading to new 

epidemiological advances (Olin 2000). A more severe 

form of cardiovascular disease that requires additional 

clinical care, is known as polyvascular disease. This 

disease is characterized by atherosclerosis in several 

artery beds. PAD can raise the risk of unfavorable 

outcomes by an equal amount or greater than that of 

heart disease or stroke (Schorr et al., 2013). The 

classification of PAD is shown in Fig. 2.  

Early detection of PAD would allow for timely 

treatment that can slow the disease’s progression, 

hence lowering the risk of major cardiovascular events. 

Nevertheless, in a primary care context, 40–60% of 

patients with PAD remain undiagnosed (Thrall et al., 

2018). Ankle-brachial index (ABI) testing is the 

standard diagnostic procedure, but it is an expensive, 

highly specialized test that needs trained technologists 

in a vascular lab setting (Currie, 2019). Although 

physiological factors can impact the pulse wave 

recording technique, pulse wave measurements have 

shown potential for effectively detecting PAD, similar 

to ABI testing (Altman et al., 2024). Peripheral blood 

flow is necessary for a pulse wave to occur, and 

sympathetic nerve input, rather than vascular patency 

may influence pulse wave characteristics (Altman et 

al., 2024). Furthermore, by lowering blood flow, 

severe congestive heart failure can mimic inflow 

illness (Altman et al., 2024). Further investigation is 

required to establish the screening and diagnostic 

validity of pulse wave velocity measurements, which 

are a reliable hemodynamic measure for detecting 

PAD (Iglehart, 2006). Because PAD can mimic other 

conditions and is associated with aging, its diagnosis 

can be challenging. To help healthcare providers 

identify high-risk patients in their everyday clinical 

 

Fig. 2. Classification of peripheral arterial diseases (PAD). 
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practice, a non-invasive screening method is needed. 

The symptoms of PAD include claudication, unusual 

leg discomfort, and critical limb ischemia, which can 

result in ulcerations and possibly amputation. PAD is 

defined by an ABI of less than or equal to 0.90 

(Nordanstig et al., 2020). 

 

1.1. Prevalence and Clinical Significance of 

Peripheral Artery Disease 

Prevalence: PAD involves the atherosclerotic 

narrowing or occlusion of arteries other than the 

coronary arteries and the aorta. It affects various 

arteries, including the carotid, vertebral, mesenteric, 

renal, and limb arteries. 

Risk Factors: Common risk factors include 

smoking, hypertension, dyslipidemia, diabetes, and 

autoimmune/inflammatory conditions. 

Clinical significance: PAD is associated with 

increased cardiovascular morbidity and mortality, and 

it significantly impairs quality of life. 

Screening and diagnosis: Screening for PAD 

involves assessing risk factors and symptoms, as well 

as using tools like the ABI and various imaging 

modalities. 

 

1.2. Challenges in Current Diagnostic Methods 

Although PAD, often caused by atherosclerosis, 

can affect any artery outside the heart and brain, it is 

frequently linked to conditions of the lower limbs. The 

prevalence of PAD is increasing worldwide, especially 

in low- and middle-income nations, with significant 

rises in cases (Aboyans et al., 2017). Among the risk 

factors include diabetes, hypertension, and smoking 

(Criqui & Aboyans 2015). Chronic limb-threatening 

ischemia and intermittent claudication are two 

possible indications of PAD (Aboyans et al., 2018). 

Management of PADs typically involve secondary 

prevention, risk factor elimination, and early diagnosis 

(Venkatesh et al., 2017). In severe cases, 

revascularization may be necessary in addition to 

medications and lifestyle modifications (Adegbola et 

al., 2022). 

 

1.3. Invasive and Non-Invasive Methods for 

Peripheral Artery Disease Diagnosis 

Since the 1670s, various invasive and non-

invasive diagnostic tools have been developed to 

address peripheral vascular diseases. These tools help 

in precise diagnosis and treatment planning. Imaging 

methods for PAD are categorized into non-invasive 

and invasive modalities, each with distinct advantages, 

disadvantages, and associated costs (Lareyre et al., 

2023). 

 

1.3.1.  Non-Invasive Methods 

1. Color duplex ultrasound 

Benefits: Non-invasive, non-ionizing, requires no 

contrast agent, provides hemodynamic data, and is 

useful for follow-up. 

Cons: Requires an operator, it has a narrow range 

of vision; takes longer to examine; and can't evaluate 

calcified vessels as thoroughly. 

2. Computed tomography (CT) angiography 

Benefits: Non-invasive, low cost, high 

availability, quick three-dimensional (3D) imaging, 

excellent spatial resolution, and the ability to post-

process data. 

Cons: Limited evaluation of calcified and infra-

popliteal vessels; iodinated contrast material is 

necessary; ionizing radiation is used. 

3. CT with dual energy 

Benefits: High spatial resolution, exceptional 

image quality in remote areas, and the ability to 

examine tissue in greater detail. 

Cons: Limited accessibility and requires 

specialist equipment; ionizing radiation is used. 

4. CT using photon counting 

Benefits: Minimizes blooming artifacts, provides 

intrinsic spectral information, results in minimal 

radiation exposure, offers excellent contrast-to-noise 

ratio, and has high spatial resolution. 

Cons: Restricted accessibility and involves 

ionizing radiation. 

5. Magnetic resonance imaging (MRI) 

Benefits: Non-invasive, does not require contrast 

material, offers high resolution, provides flow-

independent assessment of vessels below the knee, 

delivers excellent soft tissue contrast for evaluating 

plaque, provide hemodynamic information, and uses 

gadolinium-based contrast that is more tolerable for 

patients with impaired renal function. 

Cons: Greater cost compared to CT; longer 

acquisition time; limited assessment of calcifications 

due to certain procedures; claustrophobic difficulties; 

limitations with non-MRI conditional devices. 

 

1.3.2.  Invasive Methods 

1. Digital subtraction angiography 

Advantages: High resolution, fast. 
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Disadvantages: Invasive, requires iodinated 

contrast material, limited ability to assess vessel wall. 

2. Intravascular ultrasound 

Advantages: Provides widespread, detailed 

diagnostic information on lumen size, vessel wall, and 

plaque burden. 

Disadvantages: Susceptible to artifacts, lower 

frame rate, operator dependent. 

3. Optical coherence tomography 

Advantages: High resolution, provides both two-

dimensional and 3D images, suitable for smaller 

vessels. 

Disadvantages: Limited penetrative depth, 

restricted field of view, requires saline irrigation 

accompanied by inflow occlusion. 

4. Angioscopy 

Advantages: Direct visualization of vessel wall and 

wall-associated structures, provides colored images. 

Disadvantages: Cannot measure disease presence, 

plaque volume, content, or depth; requires saline 

irrigation accompanied by occlusion. 

This comprehensive comparison aids in selecting 

the most appropriate imaging modality based on 

clinical needs, patient condition, and available 

resources (Lareyre et al., 2023). 

 

1.4.  Advantages over Traditional Methods 

the Management of PAD involves 

revascularization, advanced diagnostics, and post-care 

to prevent complications. Challenges include 

embolization, calcification, and restenosis. New 

treatments feature less invasive methods, drug-eluting 

technologies, and biomimetic stents, enhancing 

outcomes. Machine learning (ML) and real-time data 

improve early diagnosis and treatment of PAD 

(Beckman et al., 2021). Nanotechnology in testing 

offers cost-effective, faster, more accurate, and 

sensitive solutions, aiding in the identification and 

management of PAD (Geiss et al., 2019). With these 

technological advances, PAD can now be diagnosed 

and treated with greater accuracy, potentially 

improving patient outcomes and quality of life 

(Elbadawi et al., 2021).  

Building on the progress in PAD treatment, 

Section 2 provides an overview of ML, including its 

various types. In Section 3, we explore how ML is 

applied in the medical field, particularly for 

diagnosing PAD. Section 4 focuses on the use of ML 

with field-programmable gate arrays (FPGA) 

technology for PAD diagnosis, discussing both its 

advancements and limitations. Section 5 examines 

how ML integrates with artificial intelligence (AI) and 

application-specific integrated circuits (ASIC) 

technologies in medical diagnosis, highlighting 

improvements with AI performance and efficiency for 

PAD diagnosis. The review will conclude with 

proposed work and final thoughts. 

 

2.  Artificial Intelligence Technologies in 

Healthcare 

Artificial intelligence and ML can greatly 

enhance healthcare by predicting illness outcomes, 

patient readmissions, and therapy responses (Jiang et 

al., 2017). Deep learning improves diagnostic 

accuracy in medical image analysis using MRIs, CT 

scans, and X-rays (Litjens et al., 2017). Natural 

language processing extracts valuable information 

from clinical documentation, improving decision-

making and data accuracy. AI in genomic medicine 

identifies genetic markers, understands genetic 

variations, and develops personalized therapies, thus 

advancing precision medicine. ML accelerates drug 

discovery, reducing risk and improving decision-

making in target validation and drug design. In 

personalized medicine, AI tailors treatments based on 

genetic profiles and previous responses, optimizing 

success rates and minimizing adverse effects (Kourou 

et al., 2015).  

Artificial intelligence in robotic surgery enhances 

precision, reduces errors, and improves patient 

outcomes (Hashimoto et al., 2018). Wearable sensors 

enable remote patient monitoring, with AI analyzing 

data and alerting healthcare providers to health trends 

(Rojas & Wang, 2020). AI also improves electronic 

health record (EHR) management, enhancing data 

accuracy, care coordination, and administrative 

efficiency. Addressing concerns about patient privacy, 

bias, and transparency is crucial for the ethical use of 

AI in healthcare (Rojas & Wang, 2020). 

 

2.1.  Machine Learning and Its Applications in 

Medical Diagnosis of Peripheral Artery Disease  

The ability of machine to independently simulate 

intelligent activity using ML has significantly 

advanced in the field of computer science (Bini, 2018), 

leading to its increasing application in various fields, 

including medicine. The use of AI in medicine has 

expanded rapidly, with collaborations between the 

medical field and AI garnering significant attention 

from the global economy, particularly in 2016 (Buch 

et al., 2018). AI’s role in medicine primarily involves 
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automating diagnostic procedures and managing 

patient care, which allows medical professionals to 

focus on more complex, non-automatable tasks. 

In medical applications, ML is typically 

categorized as supervised learning, where output 

variables are predicted from input data, and 

unsupervised learning, which involves clustering 

different groups based on specific interventions. This 

growing utilization of ML is not limited to direct 

medical care but extends to areas like human resources, 

allowing practitioners and specialists to build 

sophisticated models and extract valuable medical 

knowledge. 

Machine learning predictive models are 

particularly useful in clinical settings, where they can 

improve decision-making and even autonomously 

diagnose various disorders (Criqui et al., 2015; Schorr 

et al., 2013). Furthermore, corporations leveraging ML 

in drug prescription can help physicians identify new 

medical opportunities, potentially saving lives by 

accurately detecting pathologies (Lo et al., 2018). 

Additionally, by reducing medical expenses, 

stabilizing patient flow, and improving data quality, 

ML models offer a more effective alternative to 

traditional diagnostic methods (Napolitano et al., 

2016). 

The next section explores how ML is applied to 

PAD, how it enhances diagnostic accuracy, facilitates 

early detection, and ultimately improves patient 

outcomes. By analyzing large sets of vascular data, 

ML models are instrumental in identifying patterns 

that may go unnoticed using traditional diagnostic 

methods. This section delves into the effectiveness of 

these techniques, providing actionable insights that 

support clinicians in making more informed decisions 

regarding PAD treatment and management. 

It also highlights how ML could enhance clinical 

care and medical research, especially when applied to 

electronic health data (Jordan & Mitchell, 2015). 

Moreover, ML methods are emphasized for their 

capacity to identify illnesses and forecast health 

outcomes. For example, predicting the course of 

diabetes from electronic health information and 

classifying skin cancer from photos are two notable 

applications (Esteva et al. 2017). 

Researchers have gained new insights from 

clinical incident reports by integrating ML with natural 

language processing strategies (Ong et al., 2012) 

integrated in social networking sites. Evaluations of 

physician performance and patient testimonials 

following beneficial cancer therapies have been 

enhanced using ML (Ong et al., 2012). 

 Current PAD treatments often use a generic 

approach, but research is exploring more options 

beyond aspirin, statins, and smoking cessation, despite 

their higher costs and risks (Flores et al., 2021). ML 

models can optimize PAD treatment for patients with 

comorbidities by analyzing drug interactions and 

polypharmacy side effects. Training these algorithms 

on PAD patients’ data can help create synchronized 

treatment plans, replacing reductionist approaches 

with AI that identifies PAD subgroups and integrates 

polypharmacy and pharmacogenetics data. Advanced 

data science can also assess long-term therapy safety 

in real-world contexts, addressing clinical trial 

exclusions, like those with congestive heart failure on 

cilostazol, which showed no adverse effects (Brass et 

al., 2006).  

Machine learning can identify complex PAD risk 

factors using EHR data but requires structured data 

and portable analysis pipelines. Improved prediction 

models, such as those for surgical site infections and 

limb ischemia post-revascularization, can enhance 

PAD treatment and outcomes (Brass et al., 2006). 

Combining clinical and imaging data, like Doppler 

waveforms and CT angiograms, using ML and 

computer vision can further improve PAD diagnosis 

and reduce invasive procedures (Misra et al. 2019). 

Different researchers have applied various ML 

algorithms to a range of diseases and have assessed 

their respective advantages and disadvantages. For 

diseases similar to PAD, these findings have been 

summarized in Table 1, highlighting the advantages 

and disadvantages of each algorithm.  

Fig. 3 depicts the number of papers published on 

ML for PAD from 2002 to 2024, with a substantial 

upward trend. The data, derived from the Scopus 

database, reveal consistent growth in publications over 

time, with a notable surge in recent years as the use of 

ML in healthcare has gained traction. 

 

2.2.  Types of Machine Learning Techniques Used 

Machine learning techniques are becoming 

increasingly effective in risk assessment, disease 

prognosis, and image-based diagnosis. With a wide 

range of applications, ML is one of the fastest-growing 

fields in computer science. It involves the automatic 

identification of significant patterns in data. Giving 

algorithms the capacity to learn and adapt is the focus 

of ML tools (Shalev-Shwartz & Ben-David 2014). ML 

algorithms are classified based on their intended 

outcomes. Supervised learning converts inputs into 

desired outputs and is common due to its role in 
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teaching classification systems. The complexity of Table 1. Types of machine learning algorithms and their advantages and disadvantages. 

ML algo-

rithm 

Advantages Disadvantages 

KNN - A model that is inexpensive and simple to use. 

- Is utilized in both regression and classification. 

- Handles multiclass situations seamlessly. 

- The computation is quite high. 

- Classification costs for unknown records 

are comparatively high. 

- Elevated sensitivity to irrelevant features. 

K-Means - Simple to execute. 

- More effective when variables are larger than hier-

archical clustering. 

 

- It is challenging to estimate the K value. 

- Performance declines with a globular clus-

ter. 

- Sensitive to noise and anomalies. 

SVM - Can handle linear and nonlinear data. 

- Lower likelihood of overfitting. 

- Scales well with high-dimensional data. 

- Performance degrades when dealing with 

huge datasets.  

- Choosing a good kernel function is chal-

lenging. 

- Less effective in noisy datasets. 

Naïve Bayes - Convenient for large datasets. 

- Handles both discrete and continuous data. 

- Can be applied to both multiple and binary classifi-

cation. 

- Insensitive to irrelevant features. 

- Computationally demanding, particularly 

for models with many variables. 

- Models that have been properly trained and 

applied may occasionally underperform. 

- Lack complexity. 

Logistic re-

gression 

- Computationally effective. 

- Simple regularization. 

- No scaling is needed for input features. 

- Solving a nonlinear problem is challenging. 

- Risk of overfitting. 

 

Decision tree - Utilized for classification as well as regression. 

- Simple management of both categorical and numer-

ical data. 

- Overfitting could happen if the tree is con-

structed repeatedly. 

- Larger trees become challenging to under-

stand. 

Random For-

est 

- Applicable to both classification and regression 

problems. 

- Solves overfitting issues in a decision tree. 

- Training takes a long time. 

- Complexity increases. 

Deep learning 

 

 

- Automatically identifies features. 

- Applicable to several types of data. 

- For training, GPUs are required. 

- Complicated data models make training ex-

tremely expensive. 

Abbreviations: GPU: Graphics Processing Units; KNN: K-Nearest Neighbors; SVM: Support Vector Machine. 

 

 

Fig. 3. Number of papers published on machine learning for peripheral arterial disease from 2002 to 2024. Source: 

http://www.webofscience.com 
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teaching classification systems. The complexity of 

data generation has led to the adoption of both 

supervised and unsupervised techniques (Shalev-

Shwartz & Ben-David, 2014), enabling accurate 

predictions on unseen data (Sarker, 2021). 

 

2.2.1. Unsupervised Learning and Semi-Supervised 

Learning 

Unsupervised learning allows machines to 

recognize patterns in unlabeled data, making it useful 

for tasks like clustering. Semi-supervised learning 

combines labelled and unlabeled data. In this approach, 

a supervised algorithm is trained on labeled data, while 

an unsupervised algorithm is used to label new 

instances for further training (Smiti, 2020). 

 

2.2.2. Reinforcement Learning 

By using prior experience, this ML technique 

enables robots or agents to determine the most optimal 

behavior in a given scenario. Machines gather 

information during training to enhance their 

functionality (Smiti, 2020). 

Each ML algorithm has a unique set of benefits 

and limitations. While some are more focused on 

specificity or computing efficiency, others are 

especially excellent in terms of accuracy and 

sensitivity. The trade-offs highlighted in these 

comparisons underscore how different algorithms 

perform better for different datasets or tasks. Therefore, 

the ideal approach to use relies on the unique 

requirements and limitations of the application. To 

analyse the efficacy of ML algorithms, a number of 

researchers have investigated their application across 

a variety of datasets and assessed important 

performance measures like accuracy, sensitivity, 

specificity, and F1 score. Both Random Forest and 

Support Vector Machine (SVM) algorithms are ideal 

due to their high accuracy and ability to handle 

complex data, with Random Forest effectively 

mitigating overfitting and SVM adept at managing 

high-dimensional data. 

                                                                                                                                  

2.3.  Future-Challenges and Concepts to Consider 

Prospective assessment: ML and AI in vascular 

medicine show great promise but need real-world 

validation and comparison with standard care to avoid 

overdiagnosis and overtreatment. Improved diagnostic 

accuracy from EHRs could enhance treatment 

adherence (Rolls et al., 2016) 

Data interoperability: Large, diverse datasets are 

essential for ML and AI development. Challenges in 

data interoperability among EHRs, hospitals, and 

health systems can be mitigated by Common Data 

Models and Fast Healthcare Interoperability 

Resources. Wider acceptance of these standards is 

needed (Rolls et al., 2016). 

Algorithm inaccuracy: Addressing programmed 

bias is crucial, as ML algorithms can perpetuate 

existing biases, especially affecting marginalized 

groups like Black and Native American people. 

Diverse datasets and transparency are essential to 

prevent this risk (Rolls et al., 2016). 

Confidentiality and safety: Patient privacy must 

be protected. Blockchain and federated learning are 

being explored to securely combine data and build 

models while maintaining privacy (Yang et al., 2019). 

 

Fig. 4. Classification of machine learning (ML). Abbreviations: DBSCAN: Density-Based Spatial Clustering of Applications with 

Noise; FP: Frequent Pattern; KNN: K-Nearest Neighbors; SVM: Support Vector Machine. 
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Execution: Early collaboration among data 

scientists, clinicians, and implementation scientists are 

key for intuitive AI tool integration. Design thinking, 

coupled with consideration of end-user needs at all 

stages, can prevent workflow issues like EHR alert 

fatigue (Li et al., 2020). 

 

 
 

Fig. 5. Machine learning process. 

 

3.  Field-Programmable Gate Arrays in Peripheral 

Artery Disease Diagnosis 

Among the more contemporary methods, the 

FPGA-based hardware solution has emerged as one of 

the most commonly utilized in the healthcare field. 

However, the restructuring of material and temporal 

limits of current technologies presents a significant 

challenge to these methodologies. Despite this, FPGA 

circuits are favored due to their parallel and connected 

designs, low cost, reconfigurable features, and special-

purpose circuits. In particular, a real-time architecture 

built on FPGA is proposed to speed up feature 

extraction as well as initial diagnosis (Gu et al., 2016). 

Application-specific integrated circuits, on the 

other hand, provide excellent performance and low 

power consumption, as they are designed for specific 

uses. ASICs are particularly essential for integrating 

unique designs into medical imaging equipment, 

ultimately leading to smaller form factors and lower 

costs for designs produced in large quantities (Talib et 

al., 2021). Similarly, FPGAs are highly useful in the 

medical field due to their post-fabrication 

reconfiguration capability. Owing to their adaptability 

to design changes and enhancements, FPGAs are often 

recommended for systems that require high 

performance, particularly in cases with real-time 

processing demands (Talib et al., 2021). 

Table 2. Comparison of the results based on various machine learning techniques. 

Authors 
Machine learning 

techniques used 

Number of datasets 

used 
Accuracy Sensitivity Specificity 

F1 

score 

Weissler et al., 2023 Not specified Large cohort dataset 86% 87% 85% 0.84 

Tomkins et al., 2023 Random Forest Single large cohort 88% 81% 90% 0.76 

Hogg et al., 2023 Not specified 
2/3 training, 1/3 test 

set 
85% 83% 87% 0.8 

Jana et al., 2022 SVM, KNN 125 spectrograms 90.40% 79.97% 88.5–99% - 

Forghani et al., 2021 
Genetic algorithm, 

RU-Boost 

14 PAD patients, 19 

healthy individuals 
91.40% 90.00% 92.10% - 

Friberg et al., 2022 
NLP, Random for-

est 
800 ABI values 89% - - - 

Huthart et al., 2022 DUS 250 patient data 86% 81.00% 86.30% - 

Forghani et al., 2021 
Deep Learning: 

BiLSM 

14 PAD patients, 14 

healthy individuals 
94.80% 90.00% 97.40% 0.89 

Zhang et al., 2022 
LR, RF, XGBoost, 

LightGBM 
Not specified - 77% 72%-75% - 

Mistelbauer et al., 

2021 

CNN, RNN, U-

Net, Deep vessel 

net 

7,000 datasets 99.90% 92.90% - - 

Gao et al., 2022 LR, RF 539 patients - 100% 90.30% - 

Sasikala & Mohana-

rathinam, 2024 

KNN, LR, SVM, 

EDT, SGD, XG-

Boost 

(HB+SMOTE+ED

T) 

Cleveland dataset 99.20% 98.70% 99.12% 99 

Statlog dataset 98.52% 98.13% 98.72% 98.09 

Abbreviations: ABI: Ankle-brachial index; BiLSM: Bidirectional Long Short-Term Memory; CNN: Convolutional Neural Net-

work; EDT: Elastic Distributed Training; KNN: K-Nearest Neighbors; LR: Logistic regression; NLP: Natural language processing; 

PAD: Peripheral artery disease; RF: Random Forest; RNN: Recurrent Neural Network; SGD: Stochastic Gradient Descent; 

SMOTE: Synthetic Minority Oversampling Technique; SVM: Support Vector Machine. 
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Moreover, FPGA technology is rapidly 

advancing in the areas of medical imaging and signal 

processing, significantly enhancing both accuracy and 

reliability. With their ability to process large volumes 

of data quickly and implement real-time image 

processing algorithms, FPGAs play a crucial role in 

aiding doctors with patient diagnoses. Additionally, 

these advancements are improving signal processing 

techniques, such as digital filtering and image 

recognition, making FPGAs powerful tools for the 

future of patient care (Ramya, 2024). Thus, medical 

imaging increasingly relies on FPGAs to enhance 

performance and versatility. Through their capabilities, 

FPGAs improve processing speed, accuracy, and 

resilience, offering customized, cost-effective 

solutions. They are especially effective in handling 

data-intensive tasks, reconfigurability, high 

performance, low power consumption, and cost-

saving features, all of which enable real-time, accurate 

signal processing (Ramya, 2024). 

 

 
 

Fig. 6.  Block diagram for implementing medical 

image processing with machine learning on a field-

programmable gate array. 

 

Medical image processing with ML on an FPGA 

involves obtaining a raw medical image dataset, 

preprocessing it to improve quality using noise 

reduction and normalization, extracting features like 

edges and textures using edge detection and Histogram 

of Oriented Gradient algorithms, classifying or 

detecting results using trained convolutional neural 

networks (CNNs) or SVMs, and displaying the output 

on a user interface. 

 

3.1.  Advance Techniques Using Field-

Programmable Gate Arrays 

Field-programmable gate array capabilities 

capture the impact of enhanced control techniques, 

real-time simulation, and electronic instrumentation in 

areas like power systems, robotics, and mechatronics. 

Additionally, features such as hard memory controllers, 

analog resources, and floating-point operators offer 

significant benefits to designers, enabling more 

efficient and effective system designs (Rodríguez-

Andina et al., 2015). The integration of soft processor 

cores, embedded processors, and high-performance 

hardware peripherals within FPGAs facilitates the 

creation of powerful system-on-chip platforms. This 

trend is exemplified by the rise of FPGA-based 

systems on chip, which feature optimized architectures 

that enhance connectivity across various applications 

(Rodríguez-Andina et al., 2015). Moreover, new 

digital signal processing blocks, such as Altera’s 

variable precision digital signal processing blocks, 

specifically address fixed-point challenges, alleviating 

resource consumption and latency issues caused by 

mantissa alignment and normalization in traditional 

designs (Altera Corporation 2015).  

For instance, Ahmed et al. (2017) developed an 

FPGA-based system for the real-time detection of 

PAD using Doppler ultrasonography signals. Tested on 

150 patients (75 with PAD and 75 healthy), the system 

achieved 92% sensitivity and 89% specificity, further 

underscoring the FPGA’s real-time processing 

capability for clinical use.  

Smith et al. (2019) implemented an ML 

technique for PAD detection on an FPGA platform 

using an SVM classifier trained on Doppler 

ultrasonography signals. They tested it on 200 patients 

(100 with PAD and 100 healthy), achieving 94% 

accuracy. The study highlighted the FPGA’s fast 

processing and high accuracy, making it suitable for 

point-of-care diagnostics.  

Lee et al. (2021) developed a high-speed FPGA-

based system for diagnosing PAD using Doppler 

spectrograms. The system employed peak detection 

and fast Fourier transform for spectral analysis. Tested 

on 180 patients (90 with PAD and 90 healthy), it 

achieved 91% diagnostic accuracy, demonstrating 

faster processing than traditional methods and 

highlighting FPGA’s potential for efficient PAD 

detection in clinical settings. 

Zhang et al. (2022) developed a portable FPGA-

based device for PAD evaluation, integrating Doppler 

ultrasound signal acquisition, processing, and display. 

Tested on 120 patients (60 with PAD and 60 healthy), 

it achieved 88% sensitivity and 85% specificity. The 

study highlighted the potential of portable FPGA 

devices for PAD screening, especially in remote or 

resource-limited areas. 

Patel et al. (2016) developed an FPGA-based 

adaptive filtering system to enhance Doppler 

ultrasound signals for PAD detection. Using adaptive 

noise cancellation, the system improved signal clarity. 

Tested on 100 patients (70 with PAD and 30 healthy), 

it achieved 90% diagnostic accuracy, demonstrating 
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FPGA’s effectiveness in real-time signal enhancement 

for accurate PAD diagnosis. 

Gupta et al. (2018) developed an FPGA-based 

system for real-time hemodynamic analysis to detect 

PAD. Using Doppler ultrasound signals from 160 

patients (80 with PAD and 80 healthy), the system 

achieved 89% sensitivity and 87% specificity. The 

study highlighted FPGA’s capability for quick and 

accurate PAD diagnosis. 

Kim et al. (2020) developed an FPGA-based 

system using a CNN for PAD detection. Tested on 190 

patients (95 with PAD and 95 healthy), it achieved 

95% accuracy. The study demonstrated the integration 

of deep learning models with FPGA for high-accuracy, 

real-time PAD diagnosis.  

Zhao et al. (2021) developed a low-power FPGA-

based system for continuous PAD monitoring. Tested 

on 130 patients (65 with PAD and 65 healthy), it 

achieved 88% diagnostic accuracy. The study 

highlighted the importance of power efficiency in 

wearable and portable devices for PAD monitoring. 

Thompson et al. (2022) developed an FPGA-

based system integrating Doppler ultrasound and 

photoplethysmography for comprehensive PAD 

diagnosis. Tested on 150 patients (75 with PAD and 75 

healthy), it achieved 91% sensitivity and 90% 

specificity. The multi-sensor approach improved 

diagnostic accuracy and provided a thorough 

evaluation of PAD. 

PAD can also be analyzed using gait features. 

One study, in particular, utilized gait features to 

identify different stages of PAD. Fig. 5 illustrates the 

ML approach employed for PAD detection using these 

gait features. 

 

3.2.  Challenges of Using Field-Programmable Gate 

Arrays in Medical Diagnosis  

Complexity: FPGAs require deep understanding 

of Hardware Description Languages like VHDL and 

Verilog, deterring those accustomed to software 

solutions (Xie et al., 2019). 

Power consumption: High power usage makes 

FPGAs less suitable for portable devices (Lee et al., 

2020). 

Processing speed: FPGAs are slower than ASICs, 

which can be a limitation for real-time applications 

(Banerjee et al., 2018). 

High start-up costs: Significant initial 

investments are needed for design tools, intellectual 

property cores, and skilled personnel (Huang et al., 

2021). 

Scalability issues: Limited on-chip resources 

hinder FPGA’s ability in handling larger datasets or 

complex algorithms (Chen et al., 2017). 

Maintenance and upgrades: More effort is 

required compared to software-based systems (Patel et 

al., 2022). 

While FPGAs face challenges such as complexity, 

high power consumption, and scalability issues that 

can hinder their effectiveness in medical diagnosis, 

ASICs present a compelling alternative by offering 

tailored performance, lower power usage, and 

enhanced efficiency for specific applications. 

 

4. Application-Specific Integrated Circuits in 

Medical Imaging 

Application-specific integrated circuits are 

uniquely designed for specific uses, offering excellent 

performance, smaller form factors, and lower power 

consumption (Munn et al., 2011). They are crucial for 

medical imaging, enhancing computation and 

enabling parallel tasks (Alcaín, et al., 2021). ASICs 

reduce costs for high-volume designs and extend 

equipment life, making healthcare more accessible 

(Alcaín et al., 2017). Modern ASIC architectures 

provide competitive image processing with high-speed 

input/output, dedicated memory, and greater logic 

density, enabling novel medical imaging applications 

(Beyer et al., 2009). 

Artificial intelligence technologies like deep 

learning, ML, and neural networks are revolutionizing 

medical imaging. They improve visual recognition and 

data insights, enhancing efficiency, quality, and 

outcomes. Artificial neural networks use layers of 

nodes to process images, while deep learning, a more 

advanced form, uses multiple layers for detailed 

analysis (Langlotz et al., 2019). As a subset of artificial 

neural networks, CNNs directly extract features for 

classification from images (Liew, 2018). Radiomics is 

the extraction of outcome-related imaging features to 

improve precision medicine (Thrall et al., 2018). AI 

can identify key features and their combinations for 

predictive power, reducing redundancy in 

mathematical modeling. When integrating AI in 

medical imaging, it’s crucial to consider regulations 

and ethics. Prioritizing patient-centered design ensures 

ethical and sustainable AI use in healthcare (Currie, 

2019). 

Application-specific integrated circuits and 

FPGAs each have benefits and limitations, and the best 

choice depends on specific medical imaging 

requirements and system specifications. The need for 
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advanced systems to analyse large amounts of imaging 

data in real-time has driven the development of these 

hardware designs. Their importance is underscored by 

the impact on clinical costs and patient’s experience. 

Both technologies have significantly contributed to the 

advancement of high-capacity, modern imaging 

devices (Talib et al., 2021). 

 

4.1.  Artificial Intelligence and Application-Specific 

Integrated Circuits in Peripheral Artery Disease 

Diagnosis 

The combination of AI and ASICs in medical 

applications revolutionizes the diagnosis and 

treatment of diseases like PAD by enhancing precision, 

Table 3. Main features of field-programmable gate array (FPGA) applications in medicine, with an emphasis on peripheral artery 

disease (PAD) diagnostics and other healthcare issues. 

Paper 
FPGA 

implementation 
Application area Performance Challenges/Considerations 

Ramya, 2024 
FPGA in medical 

imaging 

Medical imaging and 

signal processing 

Improved accuracy and 

speed 

Design complexity in 

medical applications 

Samanta et al., 2023 
Memristor-based 

logic gates 

Hybrid logic gates 

for AI 

Energy-efficient logic 

design 

Integrating memristor 

technology into VLSI 

Nagarajan et al., 2011  
Pattern-based 

decomposition 

Machine learning 

algorithms 

Accelerated ML 

processing 

Efficient pattern matching 

and decomposition 

Rodríguez-Andina et 

al., 2015 

Advanced FPGA 

features 

Industrial 

applications of 

FPGAs 

High flexibility and 

performance 

Application-specific FPGA 

tuning 

Altera Corporation, 

2015 
Arria 10 FPGA 

General-purpose I/O 

for various tasks 
High throughput 

Optimizing power 

consumption and 

performance balance 

Ahmed et al., 2017 
Real-time 

detection of PAD 

PAD diagnosis using 

FPGAs 

Real-time, accurate 

PAD detection 

Optimizing system for real-

time use 

Smith et al., 2019 

Machine learning 

FPGA 

implementation 

PAD detection 

Improved ML 

algorithm 

implementation 

Resource utilization in 

FPGA-based systems 

 Lee et al., 2021 
High-speed 

FPGA system 

Doppler spectrogram 

analysis 

Fast, high-speed 

processing 

Efficiently analysing 

spectrograms for medical 

diagnosis 

Zhang et al., 2022 
Portable FPGA 

device 
PAD screening 

Portable, high-

performance PAD 

screening 

Balancing power efficiency 

with portability 

Patel et al., 2016 
FPGA-based 

adaptive filtering 
PAD detection 

Improved signal 

filtering for accurate 

diagnosis 

Efficient design of adaptive 

filters 

Gupta et al., 2018 
Hemodynamic 

analysis FPGA 

Real-time PAD 

screening 

Fast hemodynamic data 

analysis 

Real-time performance and 

accuracy 

Kim et al., 2020 
Classification of 

Doppler signals 

PAD diagnosis using 

ultrasound 

High accuracy in signal 

classification 

Real-time processing and 

classification accuracy 

Zhao et al., 2021 
Low-Power 

FPGA System 

Continuous 

monitoring of PAD 

Power-efficient, 

continuous monitoring 

Power consumption and 

continuous data transmission 

Thompson et al., 2022 
Multi-sensor 

integration 
PAD diagnosis 

Improved diagnostic 

accuracy 

Integrating data from 

multiple sensors effectively 

Xie et al., 2019 
FPGA-based 

medical solutions 
Medical diagnostics 

Efficient processing in 

medical systems 

Power and performance 

constraints 

Lee et al., 2020 
Wearable health 

devices 

Wearable health 

monitoring 

Low power, portable 

solutions 

Design considerations for 

wearable devices 

Banerjee et al., 2018 
Real-time 

medical imaging 

Real-time medical 

imaging 
Fast image processing 

Real-time constraints in 

image processing 

Huang et al., 2021 
FPGA-based 

medical devices 

General medical 

devices 

High-performance 

medical device 

processing 

Energy efficiency and 

performance balance 

Chen et al., 2017 
Medical imaging 

systems 

FPGA for medical 

imaging 

High-speed medical 

imaging 

Complex real-time image 

analysis 

Abbreviations: AI: Artificial intelligence; I/O: Input/output; ML: Machine learning; VLSI: Very large-scale integration. 
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speed, and efficiency (Sajid et al., 2024). ML and deep 

learning have transformed medical diagnosis by 

processing large datasets and making accurate 

predictions. According to Jiang et al. (2017), AI-

driven diagnostic tools often outperform traditional 

methods in accuracy and efficiency (Jiang et al., 2017). 

ASICs, custom-designed for specific tasks, offer 

optimized performance and low power consumption, 

making them ideal for medical diagnostics. Smith et al. 

(2018) described that ASICs provide the processing 

power and energy efficiency needed for real-time 

applications, suitable for portable and wearable 

diagnostic devices. ASICs are custom chips that offer 

high performance and low power consumption, 

making them ideal for medical diagnostics. They 

provide the processing power and efficiency needed 

for real-time, portable, and wearable medical devices 

(Banerjee et al., 2019). Combining AI algorithms with 

ASICs provides precise and efficient PAD diagnosis. 

Lee et al. (2020) demonstrated that “AI-driven ASICs 

deliver high diagnostic accuracy and efficiency, 

suitable for clinical and portable applications.” ASICs 

are energy-efficient, making them ideal for wearable 

and portable diagnostic devices. Zhao et al. (2021) 

demonstrated that their low power consumption, 

combined with AI capabilities, supports continuous 

monitoring and diagnosis of PAD. 

 

4.2.  Role of Application-Specific Integrated 

Circuits in Enhancing Artificial Intelligence 

Performance and Efficiency 

Application-specific integrated circuits are 

designed for specific AI algorithms, improving 

throughput and latency (Jouppi et al., 2017). They are 

energy-efficient, ideal for edge devices and data 

centers (Chen et al., 2016). Integrating processing 

components and memory on a single ASIC reduces 

communication overhead and enhances AI task 

efficiency (Han et al. 2016). ASICs are crucial for real-

time tasks in robotics and autonomous driving due to 

their high speed and low latency (Chen et al., 2014). 

Despite high initial costs, ASICs are cost-effective for 

large-scale AI deployments due to long-term energy 

savings and performance improvements (Li et al., 

2018). ASICs optimize AI tasks like matrix 

multiplications with specific compute units, reducing 

clock cycles (Zynq et al., 2018). Power gating and 

voltage scaling reduce power usage, which is crucial 

for battery-operated AI applications (Moons & 

Verhelst, 2017). High-bandwidth memory integration 

Table 4. A comparison of the various machine learning architectures and solutions discussed in the articles, with an emphasis on 

important factors such as processing speed, architecture, application, and energy efficiency. 

Paper 
Architecture/plat-

form 
Key features Application 

Energy effi-

ciency 

Processing 

speed 

Jouppi et al., 

2017 

Tensor Processing 

Unit 

In-datacenter 

performance analysis 
Deep learning High 

Fast inference 

in data centers 

Chen et al., 2016 Eyeriss 
Energy-efficient spatial 

architecture 

Convolutional 

neural networks 
High Moderate 

Han et al., 2016 
Efficient Inference 

Engine 

Compressed deep neural 

networks 

Inference 

optimization 
Very High High 

Chen et al., 2014 Diannao 
Small-footprint, high-

throughput accelerator 

Ubiquitous 

machine learning 
Moderate High 

Li et al., 2018 AI ASICs 
Overview of challenges 

and opportunities 

Artificial 

intelligence 

applications 

Varies Varies 

Zynq Net, 2018 
FPGA-Accelerated 

CNN 

Embedded 

convolutional neural 

network 

Embedded systems Moderate Moderate 

Moons & Ver-

helst, 2017 

Approximate Compu-

ting 

Energy-efficient 

ConvNets 

Convolutional 

neural networks 
Very High Moderate 

Kwon et al., 

2017 

20 nm high-band-

width memory with 

GDDR6 Interface 

On-die stacked-DRAM 
Deep learning 

applications 
High High 

Sze et al., 2017 
N/A (Survey and Tu-

torial) 

Efficient processing of 

deep neural networks 

General deep 

learning 
Varies Varies 

Horowitz, 2014 
N/A (Energy Chal-

lenges Overview) 

Computing energy 

problem discussion 
General N/A N/A 

Micikevicius et 

al., 2017 

Mixed Precision 

Training 

Efficient training with 

reduced precision 

General deep 

learning 
High Moderate 
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improves data transfer rates (Know et al., 2017). 

Hardware accelerators for deep learning processes 

enhance performance and energy efficiency (Chen et 

al., 2016). ASICs increase throughput and minimize 

delay for real-time applications (Chen et al., 2016). 

Specialized AI cores within ASICs improve efficiency 

and speed for ML tasks (Sze et al., 2017). Reducing 

the distance data travel between memory and 

processors lowers energy consumption and boosts 

processing rates (Horowitz, 2014). ASICs provide 

scalable, energy-efficient AI solutions for edge 

devices and data centers (Jouppi et al., 2017). By using 

decreased precision arithmetic, ASICs perform 

calculations faster and more efficiently (Micikevicius 

et al., 2017). Overall, ASICs are essential for AI 

efficiency and performance, driving advancements as 

AI applications grow. 

 

5.  Proposed block diagram of integrating machine 

learning and application-specific integrated 

circuits 

The figure below shows the proposed block 

diagram, which outlines a comprehensive system for 

early diagnosis using ML techniques, specifically 

tailored for integration with an ASIC. The process 

begins with data acquisition, where raw medical 

images, such as ultrasound or CT scans, are collected. 

These images undergo spectrogram preprocessing, 

transforming them into a format that enhances feature 

detection. Following this, the system performs feature 

extraction, isolating the most relevant patterns 

indicative of disease, such as arterial blockages or 

irregular blood flow. Extracted features are then 

normalized to ensure consistency, which improves the 

performance and accuracy of the ML model. The next 

step, feature selection, refines the dataset further by 

choosing the most significant features, eliminating 

irrelevant data that could hinder model efficiency. 

Once this is completed, the training dataset is prepared, 

where the model learns to distinguish between healthy 

and diseased tissues. The ML training phase is 

 

Fig. 7.  Proposed block diagram. 

Table 5. Comparison of component-based conventional 

method, field-programmable gate array (FPGA), 

application-specific integrated circuit (ASIC), and 

machine learning techniques, along with their 

performance. 

Method Type Performance 

Component-

based 

conventional 

Traditional 
Moderate accuracy, 

often slow processing 

FPGA Hardware 

High-speed processing, 

good for real-time 

applications 

ASIC Hardware 

Very high performance, 

optimized for specific 

applications 

Support 

Vector 

Machine 

Machine 

learning 

High accuracy, 

effective in high-

dimensional spaces 

Random 

Forest 

Machine 

learning 

Very high accuracy, 

robust to overfitting 

Deep 

learning 

Machine 

learning 

Excellent performance 

on complex data (e.g., 

images, speech) 

 



DOI: 10.6977/IJoSI.202502_9(1).0007 

N. Pravalika, A. Jabeena, etc./Int. J. Systematic Innovation, 9(1), 78-97 (2025) 

91 

 

followed by model optimization, which fine-tunes the 

parameters to maximize the model’s predictive 

capabilities. Finally, the trained and optimized model 

is integrated onto an ASIC, enabling real-time 

processing of medical data with minimal latency. This 

approach is unique in its combination of spectrogram-

based preprocessing, efficient feature selection, and 

deployment on ASIC hardware, ensuring faster 

diagnostics while maintaining high accuracy. The 

integration of such a hardware-software solution is 

particularly innovative, enabling the early detection of 

diseases like PAD and providing a practical tool for 

clinical applications. 

 

6.  Conclusion 

In this study, ML techniques were applied to 

identify PAD using both FPGA and ASIC platforms. 

The FPGA enabled flexible and quick prototyping; 

however, its processing speed and power consumption 

were limited. Transitioning to an ASIC 

implementation resulted in notable gains in processing 

speed, resource efficiency, and optimal power 

efficiency. Ultimately, FPGA-based methods were 

surpassed by ASICs with integrated ML capabilities, 

making them the preferred option for reliable, real-

time PAD detection in both clinical and portable 

medical applications. For medical applications, 

Random Forest and SVM are the best ML algorithms 

because of their accuracy and capacity to handle 

complex, high-dimensional data. The high-speed 

FPGA system excels at analysing Doppler 

spectrograms in real-time for PAD diagnosis, while the 

efficient inference engine and tensor processing unit 

provide high energy efficiency and quick processing 

for deep learning tasks. 
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