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Abstract

Recent advancements in machine learning (ML) have sparked widespread interest in integrating DevOps capabilities 
into software and services within the information technology sector. This objective has compelled organizations to 
revise their development processes. We propose a ML operations model based on meta-ensembling algorithm for 
gradient boosting regressor with a case study of real estate price prediction. The train and test dataset is loaded with 
(1460,80) predictive variables, with the sale price as the target variable. The forecasting model is developed using 
an artificial neural network and a linear logistic regression model, such as LASSO, alongside with the Heroku tool 
for model deployment. The methodology addresses different steps of data pre-processing, and feature engineering, 
followed by feature selection, model building, evolution, creating, and calling application programming interfaces 
for deployment as IaaS, under research, development, and production environment phases. The model is built using 
the Anaconda Jupyter notebook with various Python libraries and Docker to ensure reproducibility and robustness. 
To ensure good business value, the performance of the proposed and implemented model is evaluated using different 
classification metrics, such as area under the curve-ROC for correct assessment measure, alongside accuracy metrics 
like mean squared error, root mean squared error, and R-squared. Our work serves as a useful reference for building 
and deploying ML pipeline platforms in practice.
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1. Introduction

Increasing advancements in deep learning, 
along with big data, have fostered the pervasive use 
of machine learning (ML) and artificial intelligence 
across various fields (Chen et al., 2014; Lecun 
et al., 2015). Embedding ML models into different 
applications makes their development and deployment 
significantly more complex and challenging than 
traditional ML implementations. As noted in previous 
studies (Kumeno, 2019), in feedback loops, the life 
cycle of ML applications significantly differs from 
that of traditional methods. Due to the disparities 
and complexities introduced by computational 

methods, there is a need for an efficient and reliable 
approach to developing big data applications, as 
well as supporting services and infrastructure. The 
complete life cycle management of ML applications 
involves multiple stages, infrastructures, artifacts, 
and channels. Therefore, the increasing adoption 
of DevOps practices to improve ML processes has 
gained significant popularity. DevOps practices aim 
to automate and simplify the integration, testing, 
acceptance, implementation, and deployment phases, 
enhancing ML applications to a greater extent (Matsui 
& Goya, 2020). Another empirical study on machine 
learning operations (MLOps) identifies and confirms 
productivity gains following the adoption of DevOps, 
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such as higher-quality code with continuous sharing, 
integration, and faster issue resolution (Rzig et al., 
2022). Many utilities and key components are also 
provided by MLOps to manage data storage, access 
to execution, scheduling, and monitoring of several 
jobs and pipelines. Developers can use MLOps to 
configure pipelines or employ an SDK to define ML 
workflows. These pipelines may include several steps 
corresponding to different stages of the life cycle, such 
as data analysis, model training, model evaluation, and 
model deployment. By leveraging DevOps principles 
(Bass et al., 2015), ML pipelines benefit from workflow 
automation and clarification. Continuous integration 
and continuous delivery (Duvall et al., 2007; Humble 
& Farley, 2010) bring benefits, such as increased 
developer productivity and faster code deployment, 
which can be applied to the iterative development 
and deployment of ML applications. In addition, 
continuous training or retraining of models (Google 
Cloud, 2020) can also be applied to avail new training 
data and improve the performance deterioration of the 
model.

MLOps is a concept developed to describe the 
combination of ML system development and operation 
through the application of DevOps principles to the 
life cycle management of ML applications. Aside from 
ML codes, these frameworks and platforms provide 
functional components and utilities to help mitigate 
ongoing maintenance costs resulting from ML system 
technical debt (Sculley et al., 2015). However, the 
performance of these platforms is still uncertain in 
terms of computing resource utilization and the time 
required to train the model. Further experimentation 
is necessary to evaluate ML pipeline performance 
with DevOps integration, or in other words, to assess 
MLOps using real-world scenarios.

This research applies DevOps practices to ML 
prediction algorithms for automating and accelerating 
pipeline deployment. Metrics such as mean square 
error (MSE), root mean square error (RMSE), and 
R-squared are used to assess the performance, accuracy, 
and integrity within the MLOps framework. The main 
contributions of this research are summarized below:
(i) Proposes an ML-based MLOps model for the 

deployment of prediction algorithms.
(ii) Review various ML techniques for real estate 

house-sale price prediction across existing case 
studies.

(iii) Implemented DevOps automated toolsets 
to deploy ML pipeline with minimal human 
intervention.

(iv) Measures performance using various evaluation 
metrics on the chosen dataset.

The rest of the paper is organized as follows:
(i) Section 2 summarizes previous research relevant 

to this study.

(ii) Section 3 outlines the use of the proposed 
MLOps model to evaluate the performance of 
ML platforms.

(iii) Section 4 discusses the experiment settings, 
including platform composition, multi-step 
MLOps pipeline construction, and selected 
performance metrics.

(iv) Section 5 discusses and analyzes our experimental 
results.

(v) Section 6 concludes the study.

2. Literature Review
ML applications are evolving from ML programs 

to developmental ML systems as more computational 
models are used in software. More than simply 
applying software engineering principles to the life 
cycle management of applications and addressing 
the complexity of maintaining systems with multiple 
feedback loops, this paper highlights the difficulties in 
providing extensive and functional infrastructures and 
platforms to support the development and deployment 
of ML applications.

2.1. ML Pipeline Platforms
Developing and deploying ML applications 

entail more than just collecting data, training models, 
and making predictions. Performing these parts while 
ignoring proper maintenance can result in significant 
technical debt (Sculley et al., 2015). To create efficient 
and reliable ML applications, previous experience and 
challenges must be considered. For example, ML has 
been introduced into areas that require high safety, such 
as autonomous driving and paramedical diagnostics. 
However, before deploying these applications, 
ensuring quality and privacy is crucial, necessitating 
thorough testing and validation of both datasets and 
trained models.

Creating a workflow from data pre-processing 
to application runtime monitoring can be time-
consuming and error-prone. Automating this process 
allows developers to focus on ML application 
development. Furthermore, when new training 
data becomes available, or model performance 
deteriorates, computational models must be retrained 
and redeployed, requiring effective feedback loops 
from the monitoring system to earlier phases of 
development. ML platforms such as TFX (Baylor 
et al., 2017) and ModelOps (Hummer et al., 2019) 
address the issues raised above. They provide end-to-
end life cycle management for ML applications and 
systems by supplying a set of essential components 
for tasks such as data pre-processing, model training, 
model evaluation, and model serving. Designed 
with pluggable and customizable components, these 
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platforms aim to provide a generic solution for multiple 
development scenarios that require different ML tasks. 
ML workflows can be orchestrated into pipelines that 
run on these platforms by configuring and integrating 
different components. While virtual machines and 
containers are commonly used for training ML 
models in cloud environments, these platforms also 
run ML pipelines in hybrid environments. In addition 
to production-level reliability and scalability, these 
platforms provide continuous training capabilities, 
enabling models to adapt to evolving data and 
increasing update frequency.

2.2. MLOps
ML applications and systems differ from 

traditional software in many ways, necessitating 
custom DevOps for ML features. Traditional software 
systems contain fewer model artifacts and more data 
processing steps and must deal with more complex 
relationships between these artifacts. The training 
outcomes must be traceable, robust, and reproducible 
due to the use of computational models and their 
experimental nature (Olorisade et al., 2017). MLOps 
is an ML engineering practice that applies DevOps 
principles to ML systems, unifying the development 
and operation of ML systems. In terms of continuous 
integration, additional test procedures, such as data 
and model validations, are introduced alongside 
traditional unit and integration tests. Processed 
datasets and trained models are automatically 
and continuously delivered from data and deep 
learning scientists to ML system engineers through 
continuous deployment. Continuous testing dictates 
that the arrival of new data and the deterioration of 
model performance necessitate model retraining or 
performance improvement through online methods 
(Google Cloud, 2020; Wikipedia, 2020). In a similar 
context, Ruf et al. (2021) have demystified the 
process of selecting among numerous existing open-
source tools. They also acknowledge that as more 
tools become available for different operational 
phases, defining responsibilities and requirements 
becomes increasingly complex. With this goal in 
mind, the authors investigated and clearly defined 
MLOps technologies and tools based on carefully 
chosen requirements, including input data, model 
performance, and system quality metrics. Frameworks 
for MLOps theory have also been developed in 
various research works (John et al., 2021; Makinen 
et al., 2021; Marrero & Astudillo, 2021; Subramanya 
et al., 2022) and applied to forecast or predict various 
real-world applications, such as the generation of 
electricity bills. Their work further emphasizes the 
importance of using standardized frameworks or 
models for generalized applications.

2.3. ML and House-Sale Predictions
Previously, the real estate industry was not 

recognized as an advanced industrial category. However, 
with the advancement of ICT and its integration with 
numerous financial markets and investments, the real 
estate industry has become more dynamic (Kang 
et al., 2020). Many researchers have examined the 
performance of various ML algorithms on various real-
world datasets to predict real estate or house sales. In 
fact, ML is increasingly being used for large-scale real 
estate appraisals, followed by automated valuation 
models. Data from real estate listings is collected and 
used in mass appraisals to estimate property values, 
ensuring that appraisals are carried out consistently 
and impartially (Mora-Garcia et al., 2022). In a similar 
context, several renowned researchers (Fan et al., 
2018; Jui et al., 2020; Wang & Li, 2019) have proposed 
different proposals and algorithms for an innovative 
real estate valuation approach. These studies also 
address the limitations of correlation coefficients in 
traditional approaches. Other studies have attempted 
to identify the most effective ML algorithms for 
predicting house prices and analyzing the impact of the 
coronavirus disease 2019 pandemic on house prices 
using different datasets, such as Spanish city, Shenzhen 
(China), and Dhaka (Bangladesh) (Cheung et al., 2021; 
Kaynak et al., 2021; Neloy et al., 2019; Pai & Wang, 
2020). The algorithms random forest (RF), extra trees 
regressor, gradient boosting regressor, support vector 
regressor, multilayer perceptron neural network, and 
k-nearest neighbors (kNN) were used. Their findings 
indicated that RF and ETR algorithms outperformed 
other algorithms in terms of predictive performance.

2.4. Motivation and Social Relevance
House-sale prediction is critical for enhancing 

real estate efficiency. House prices are determined, as 
previously stated, by calculating the acquisition and 
selling prices within a neighborhood. As a result, the 
house-sale prediction model plays an important role 
in bridging the information gap and improving real 
estate efficiency. With the proposed model, we can 
more accurately predict prices. Prediction systems 
have become increasingly important in our lives with 
the rise of platforms, such as YouTube, Amazon, and 
Netflix, over the last few decades. These systems are 
now unavoidable in our daily online experiences, 
from e-commerce (suggesting products that may be 
of interest to buyers) to online advertising (suggesting 
relevant content based on user preferences).

3. Proposed MLOps Model
The proposed working model is segmented 

into three different parts: research environment, 
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development environment, and production 
environment, as shown in Fig. 1.

To investigate and estimate the performance 
of ML pipelines on a specific platform, we must 
first construct an ML platform based on previous 
work. Meanwhile, we want the platform to support 
continuous training by automatically retraining models 
when specific events occur on a regular basis, such as 
changes to the ML algorithm code. Finally, we will 
develop an efficient ML pipeline that can be run on 
this platform.

3.1. Research Environment
In the research environment, building of ML 

pipelines is the major step, which includes the 
following steps:
(i) Data analytics
(ii) Feature engineering

(iii) Feature selection
(iv) Model training
(v) Obtaining predictions/scoring

As shown in Fig. 2, the pipeline starts with 
data collection and analytics and ends with different 
predictions for the underlying dataset.

3.2. Development Environment
This phase creates an application programming 

interface (API) and makes calls to the API. It is also 
responsible for correlating the research and production 
models to produce the same outcome when given the 
same data.

3.3. Production Environment
After building an ML model using data science 

on Jupyter notebook, the development code is 

Fig. 1. Proposed machine learning operations model for deployment of machine learning algorithm

Fig. 2. Machine learning pipeline for making predictions
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transformed into code that can be used in production. 
In the deployment of ML models (Fig. 4), we take 
our models from the research stage (Jupyter) to a 
fully integrated API that can be called live to make 
predictions on real-time data.

With continuous integration and various 
deployment solutions, such as platform or infrastructure 
as a service, Docker is also used to ensure model 
reproducibility and robustness. The model is built and 
deployed with Python as our main language.

4. Detailed Architecture of the Model
ML model deployment refers to the process of 

making models available in production environments 
where they can provide predictions to other software 
systems. Models begin adding value and making 
predictions after they are deployed to production, so 
deployment is an important step. However, deploying 
ML models is difficult. This section describes the 
architecture or environments in detail.

4.1. Data Collection
Data collection mainly refers to the methods or 

procedures of data acquisition from different resources. 
Real-time datasets may be collected from public 
repositories such as Kaggle, UCI, and Psyionet. The 
dataset under consideration is taken from the house 
price dataset from Kabul through a publicly available 
online Kaggle data repository.

4.2. Data Analytics/Pre-processing
A typical ML pipeline involves steps of 

gathering the data, typically coming from different 
areas of the business or different data sources, then 
transforming that data in various forms to tackle the 
quality of the data or to create new features. This 
first step of data gathering makes the data available 
to the data scientists so they can go ahead and build 
the ML models. In data analytics or pre-processing, 
we need a good understanding of what the data are 
telling us. It is a good practice to know the data well, 
to get familiar with the variables, to know how the 
variables are related to each other, and to know what 
we want to predict. If this was a supervised case, we 
need to know what variables we can use. Surely, there 
are regulations in your business and which variables 
we cannot use. Once we have analyzed our data, the 
next step is feature engineering after data analysis, 
which you have gained a good understanding of 
whether we can use the variables as they are or if we 
need to transform them before passing them onto an 
ML algorithm.

4.3. Feature Engineering
During feature engineering, we transform the 

variables to make them ready to be utilized in an ML 
model. There are a variety of problems that we can 
find in the variables in our datasets as shown in Fig. 5 
below.

As described in Fig. 5, one of the problems is 
missing data, meaning an absence of values for certain 
observations within a variable. There could be a variety 
of reasons why data could be missing, a value can 
be lost or not stored properly during data storage, or 
the value does not exist. Other problems may include 
the presence of rare labels in categorical variables, the 
distribution of the variables for numerical variables, 
and the presence of outliers. These problems, especially 
the outliers, may affect certain ML models or linear 
regressions, and this tends to cause over-fitting in a bad 

Fig. 4. Deployment of machine learning pipeline in a production environment

Fig. 3. Development environment to ensure 
reproducibility of outcome
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generalization. Finally, the magnitude of the features 
also affects the performance of the working model.

For example, if we were trying to predict house 
price and we have one variable, which is the area in 
terms of square kilometers, and the other variable is 
the number of rooms that vary from 1 to 10. Hence, in 
a linear model, the variable that takes the larger values 
would have a predominant role over the house price. In 
this case, the area variable would be more important to 
determine the price of the house. However, we know 
that the number of rooms also plays a role. As in the 
linear model, Y, which also supports vector machines 
and neural networks, is supposed to converge faster 
and find the optimal hyperplane faster when using 
features with a similar scale. Furthermore, all the 
distance-based algorithms are sensitive to the scale of 
the features.

Techniques that we can use to tackle each of the 
problems include variable transformations, feature 
extraction, and creating new features, as shown in 
Fig. 6 below.

4.4. Feature Selection
After feature engineering, we can select the 

features that we want to use in the ML models. Feature 
selection refers to algorithms or procedures that will 
allow us to find the best subset of features from all the 
variables present in our dataset. This is a process to 
identify the most predictive features at the beginning 
of the feature selection process. We start with the entire 
dataset, with all the variables, and by the end of the 
feature selection process, we end up with a smaller 
number of features, which are typically the most 
predictive ones. There are several reasons why we build 
models using fewer features. One of the reasons is that 
these are easier to put into production, as we need to 
ship smaller, Jason, messages between the business 
systems and the model. Second, we need to write less 
code to pre-process those features, and we also need to 
write less code to handle potential errors, and then they 
will take the predictions out of our systems. There are 
three umbrella terms under which we group the different 
feature selection algorithms. One group corresponds 
to the embedded methods, another group to the rapid 
methods, and then we have the filter methods.

We can make the feature selection part of the 
pipeline, but the issue is better resolved if we select the 
features ahead of building the pipeline that we want to 
deploy and then make the list of the selected features 
part of the pipeline that we want to deploy.

4.5. Model Training
After feature selection, we train the models to 

build our ML algorithms. There are several models 

that we can build. We can build, for example, linear 
models such as linear logistic regressions or MARS, 
decision trees-based algorithms such as RF and 
gradient-boosted trees, and neural networks for super-
biased models. We can also build clustering algorithms 
or recommender systems. This research work builds 
the MLOps forecasting model developed with ANN 
and a linear logistic regression model, LASSO.

4.6. Making Predictions/Score Values
After model training, the next crucial step comes 

under the research environment is obtaining predictions 
and evaluating the model performance. We need to 
deploy the entire ML pipeline and not just the ML 
model because what we need to have in the production 
environment is a complete sequence of steps that take 
in the raw data and outputs a final prediction. Hence, 
when we passed the pre-processed data to our models, 
we were able to get the predictions that they made. 
We then need to evaluate the predictions that these 
models make. To make sure that the models bring 
good business value, we evaluate the performance 
using different metrics depending on the project; for 
example, we measure the area under the curve-RAC, 
which gives us an indication of how many times the 
model makes a good assessment versus how many 
times the model makes the wrong assessment. We also 
measure the accuracy, MSE, RMSE, and R2 errors for 
linear models.

4.7. ML Algorithms
Two ML algorithms were pitted against each 

other in this study to see which one was better at 
predicting housing prices. Baldominos et al. (2018) 

Fig. 5. Different aspects of feature engineering

Fig. 6. Feature engineering techniques
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compared four ML algorithms for housing prices in a 
similar study. They discovered that the RF regression 
algorithm predicted the least error, followed by 
the kNN regression algorithm, in their research. 
kNN regression and Artificial Neural Networks are 
proposed as methods for predicting house prices in 
Oxenstierna’s (2017) study. Because both reports look 
at the performance of kNN regression, the algorithm 
will be looked at in this report as well. RF regression 
will be included in the study and compared to the kNN 
regression algorithm because Baldominos et al. (2018) 
discovered that it has the lowest error for predicting 
house prices and Oxenstierna (2017) mentions it as 
relevant for future work.

4.8. kNN Regression
The kNN algorithm is a non-parametric method 

for solving classification and regression problems. The 
algorithm assumes that any item in the dataset with 
similar values for other features will have similar 
values for the prediction target. The target variable in 
our case is the house price, which is predicted by the 
k number of neighbors with the most similar features.

The information can be visualized as points in an 
n-dimensional Cartesian space. In the two-dimensional 
case, for example, we have two features with values 
represented as points on a plane. Fig. 7 depicts the case 
when k = 3.

The three nearest samples are identified by 
lines from the test sample. We are concerned with 
determining a numerical value for the unknown 
variable because we are dealing with regression. Using 
the mean of the nearest neighbor is a straightforward 
method. However, some of those k points may be much 
further apart than others. To combat this, weights can 
be assigned to each neighbor based on some function 
based on distance. One method is to weigh them in 
inverse proportion to the distance. In many cases, 
the inverse distance weighted average approach 
outperforms uniform weights, i.e., no weights. In 
practice, the number of neighbors to include in the 
calculation (i.e., the size of k) is determined by trial 
and error, comparing prediction errors for various 
values of k.

4.9. RF Regression
RF is an algorithm that can be used for 

classification as well as regression. RF models are built 
by assembling a set of decision trees based on training 
data. Instead of using a single tree to predict the target 
value, the RF algorithm uses the average prediction of 
a group of trees. The decision trees are built by fitting 
to randomly generated groups of rows and columns in 
the training data. This method is known as bagging, 

and it results in less bias because each tree is built at 
random on different parts of the input. The method 
of averaging decision tree predictions reduces over-
fitting that can occur when using single decision trees.

To determine which ML method is best for the 
house price problem, the prediction accuracy of the 
algorithms kNN and RF were compared. Instead of 
writing algorithms from scratch, algorithms from 
the scikit-learn library were used in this study. It is a 
cutting-edge Python library that is part of the scikit 
suite of scientific toolkit. Pandas, the data analysis 
library from “Our Python,” was also used. The dataset 
was pre-processed and cleaned before comparing the 
algorithms so that the algorithms could use it as input. 
Furthermore, a method for evaluating the data has 
been established, and finally, the ML algorithms for 
prediction using the cleaned dataset have been tested 
with different values for relevant hyper-parameters.

5. Results and Discussion
This section details the experimental setup for 

the prediction of house-sale prices in Kabul using a 
linear regression model, followed by implementation 

Fig. 7. The k-nearest neighbor algorithm with k = 3

Fig. 8. Dataset view for house-sale price prediction in 
Kaggle
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and deployment of the proposed model in terms of 
making predictions.

5.1. Dataset
As described in Fig. 2, gathering data coming 

from different sources undergoes several stages 
as pre-processing of data. The current research 
work is based on a house-sale price dataset for 
Kabul obtained from a publicly available online 
Kaggle repository (https://www.kaggle.com/c/
house-prices-advanced-regression-techniques/data).

In general, ML algorithms are designed to accept 
only numerical data as input. More than half of the 
columns in the Housing dataset are non-numerical and 
must be encoded, which is done with one-hot encoding 
and labeling in this case. Data pre-processing is in 

high demand because only by providing accurate and 
error-free data to our model will the model be able to 
provide precise estimates that are very close to the 
actual value. For the sake of model accuracy and over-
fitting, we remove null values, perform an overview 
of the dataset, and remove unnecessary data columns 
(independent attributes) in data pre-processing and 
cleaning. Several columns also have some empty 
values that have been handled in various ways. These 
generic methods of normalizing data include encoding 
categorical data and detecting missing values, outliers, 
temporal variables, discrete variables, and continuous 
variables. For example, outliers are errors in the 
collected entries that occur as a result of the manual 
collection of data through web scraping, such as null or 
blank values, human errors, or impractical values. To 
compensate for these errors, we must pre-process the 

Fig. 9. Data analysis for different types of variables present in the dataset
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Fig. 10. Plot of monotonic variables versus target during feature engineering

Fig. 11. Feature selection code implementation
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data and remove the clutter values. All these different 
types of variables are plotted in graphical notation to 
check their evidence and are shown in Fig. 9 before 
transformation.

Fig. 9 shows the graphical representations for 
different types of variables in the house-sale price 
prediction dataset.

5.2. Feature Engineering of the Dataset
After the data have been cleaned and making 

it free from outliers, feature engineering and 
exploratory data analysis have to be done. Fig. 10 
shows the histograms for cleaned data after feature 
engineering.

Fig. 12. LASSO model implementation code

Fig. 13. LASSO model evaluations for the prediction 
of house-sale price
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5.3. Feature Selection after Feature Engineering
Because having irrelevant features in our data can 

reduce the model’s accuracy, we use feature selection 
to automatically or manually select the features that 
contribute the most to the prediction variable. To 
select features for the final model, filter methods, 
such as constant feature elimination, quasi-constant 
feature elimination, duplicate feature elimination, 
fisher score, univariate method, mutual information, 
and correlation, are used. Wrapper methods such as 
step-forward selection, step-backward selection, and 
exhaustive search are examples of such methods. 
Methods such as decision tree-derived importance and 
regression coefficients are embedded.

5.4. Fitting the ML Model
The data are then divided into training and 

testing sets to classify the best-fitting ML model. The 
standard 80-20 split ratio is used: 80% of the data is 
considered a training set, and 20% is considered a 
testing set. Scikit-Learn must be imported before the 
model can be implemented. It is a Python library that 
provides ML algorithms for implementation as well 

as many other modeling features. We are using the 
supervised regularization method, LASSO, to perform 
precise price estimation. Our model will be the one 
with the lowest error and the closest value prediction. 
After setting the seed for the model, the next step 
comes to implement the model to predict different 
accuracy measures, such as MSE, RMSE, and R2 
and to give good predictions for our hose-sale price 
dataset. Fig. 11 shows the code that we used for feature 
selection.

Fig. 13 shows the best-fit curve under the LASSO 
model for the price prediction dataset.

Based on the observations above, it is clear that 
linear regression produces the most precise results and 
has been chosen as the predictive model for house-sale 
prediction. The model is ready for use as an analytic 
tool for both real estate business managers and buyers.

5.5. Deployment of the Model

Once implemented, the model predicts the price 
of the property (house) in that specific location, Kabul, 
as selected in our dataset. Next comes deploying the 
model with the Docker container framework, in which 

Fig. 14. Python code for deploying machine learning model to production
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the user can enter the desired values and our model 
predicts the output. This is made possible using the 
Python package Heroku and Docker to create an API. 
To build the web application and connect the Model to 
it, we must first extract our model into pickle and.json 
files and design a web page using HTML, CSS, and 
JavaScript. The model is now ready to be displayed 
and predicted on the web application.

6. Conclusion and Future Scope
The LASSO-supervised regularization ML 

model has proven to be an effective method for 
determining the best-fitting algorithm for a model. 
This linear regression algorithm provides a very 
accurate estimation of house prices. It provides much 
more accurate estimations for various locations. 
Furthermore, linear regression provides nearly 
accurate predictions based on the confusion matrix. 
Linear regression fits our dataset and performs well. 
Deployment of the model after implementation helps 
to predict the value automatically for different datasets. 
In the future, an appealing and interactive graphical 
user interface can be created to integrate into any real 
estate sale website, where sellers can provide details 
and houses for sale and buyers can contact based on the 
information provided on the website. To make things 
easier for the user, there could be a recommending 
system that recommends real estate properties based on 
the predicted price. The current dataset only includes 
a few locations in Kabul. Expanding it to other Indian 
cities and states is the long-term goal. Google Maps can 
be included to make the system even more informative 
and user-friendly. This will display the neighborhood 
amenities, such as hospitals and schools within a 1 km 
radius of the given location. This can also be factored 
into predictions because the presence of such factors 
raises the value of real estate property.
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