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Abstract 

Globally, one of the major concerns in women’s health issues is gynecological disorders such as cancer, which needs 

to be observed at its early stage. With traditional approaches, it is quite difficult to detect such disorders at its early 

stages. Therefore, more advanced tools need to be integrated. This paper focuses the advancements of artificial 

intelligence (AI) and machine learning (ML), exploring their potential in the early detection and diagnosis of these 

disorders. This paper presents a systematic meta-analysis of AI/ML approaches employed in the diagnosis of 

gynecological disorders using medical imaging modalities such as magnetic resonance imaging (MRI), ultrasound, 

etc. The flow for systematic meta-analysis is based on designing the research objective, selection and searching 

approach with inclusion and exclusion strategy; quality assessment is performed then; and finally, discussion of 

interpretations is also presented. This paper investigates how ML algorithms can extract characteristics from MRI 

images and how to use ML to extract and recognize the features from medical images such as MRI, ultrasound, 

computed tomography (CT) scans, etc. for early detection of gynecological tumors and provision of more personalized 

risk assessment. However, it is observed that there is a significant impact of advancement of AI/ML on medical 

technology in the future. Therefore, this paper presents a significant contribution for future medical applications and 

innovations. 
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1. Introduction 

Oncologists in practice face an understanding 

deficit as a result of the exponential growth of 

information about cancer together with the fast 

development of human society (Bhattacharjee et al., 

2017; Prapty & Shitu, 2020). Researchers have 

demonstrated that it is quite challenging for physicians 

to handle clinical workloads in shorter timeframe to 

gain professional expertise (Denny et al., 2019; 

Mehrotra et al., 2011). More individuals may take 

advantage of societal investments in research and 

development, physicians can promote and embrace 

innovative prediction, diagnostic, and treatment 

procedures based on the best available evidence. 

Artificial intelligence (AI) (Constantinou et al., 2009; 

Liu et al., 2021) has entered the medical field for 

academic advancements, followed by an immediate 

introduction of new tools and techniques. One of the 

most challenging instances for oncology is the 

identification of gynecological malignancy. The many 

malignancy forms, every one of which is named after 

the body part in which it initially manifests, are shown 

in Fig. 1 (Basij et al., 2018; Chauhan & Singh, 2021). 

The goal of AI is to develop intelligent machines that 

can emulate human cognitive processes (Kajala & Jain, 

2020; Ray, 2019). By increasing precision, 

effectiveness, and scalability, these developments 

have an opportunity to transform the diagnosis of 
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gynecological cancer (Hou et al., 2022). Over the past 

decades, AI has been developed to be used for 

scientific application and medical diagnosis because 

AI can learn from patterns or knowledge from data and 

predict accurate outcomes, as compared to 

conventional techniques (Akazawa & Hashimoto, 

2021; Shrestha et al., 2022). Therefore, several types 

of AI/ML have been used by researchers for early 

diagnosis of gynecological cancer. For this medical 

condition, imaging analysis is generally used. 

Gynecological cancers can be easily detected using 

radiological imaging techniques such as magnetic 

resonance imaging (MRI), computed tomography (CT) 

scans, histopathology, and ultrasounds (Zhou et al., 

2020). This approach advances the diagnosis 

performance in women's health also. Apart from 

imaging technologies, other parameters such as 

metabolic testing, polycystic ovarian disease (PCOD), 

and polycystic ovary syndrome (PCOS) can also be 

used for diagnosis. These AI/ML algorithms can detect 

risk factors and suggest patient care. While AI/ML has 

massive potential for detecting gynecological cancer, 

there are still several research gaps due to inadequate 

data quality and availability. 

 

 

 
Fig. 1. Types of gynecological cancer 

 

The primary goal of the paper is to give a 

thorough analysis of the most recent research on 

AI/ML for automated detection of gynecological 

cancer. Other objectives are as follows: 

To investigate and study the advancement of AI 

tools and techniques in integrating and analyzing 

diverse datasets, such as medical imaging, health 

parameters, and clinical information for enhanced 

gynecological cancer detection. 

To investigate the potential of ML-based 

approaches in early detection and classification of 

gynecological malignancies. 

To contribute to the body of knowledge in the 

field of gynecological oncology by providing insights 

into the potential applications and limitations of AI 

and ML techniques in cancer detection. 

 

2. Literature Review 

In the early 1950s, AI first became a reality. The 

invention of intelligent robots with human-like 

capabilities and responses, or AI, has been universally 

acknowledged as having a significant impact on the 

industrial sector (Kasture et al., 2021; Tanaka et al., 

2016). Medical professionals increasingly integrated 

AI into the field of medicine after realizing its 

significance. Therefore, AI can be broadly used in 

medical field. There are a lot of recent instances of AI 

being used in medicine. By generating a new field of 

study to be exploited for precision medicine, ML and 

radiomics are revolutionizing radiology and medicine. 

Gynecologic oncologists are hesitant to fall behind as 

AI continues to advance in the world of medicine. 

Medical imaging data from MRI and ultrasound scans 

may be analyzed by AI algorithms to help with the 

identification and characterization of gynecological 

cancers. Radiologists may now conduct more precise 

evaluations and identify small abnormalities that could 

be difficult to see visually because of the 

advancements made in AI approaches, notably deep 

learning. Researchers have reported that recent 

advancements of AI/ML had revolutionized the 

assessment and management of risk of gynecological 

cancer and provide personalized treatment plans (Hu 

et al., 2023; Lingappa & Parvathy, 2023). 

Several studies have highlighted the impact of 

AI/ML on gynecological cancer diagnosis and risk 

assessment. For instance, deep learning models, such 

as Convolutional Neural Networks (CNNs), have 

shown great promise in the detection of early-stage 

tumors from MRI and ultrasound scans. Other 

machine learning techniques, such as Support Vector 

Machines (SVMs) and Random Forests, have also 

been employed to improve the classification of 

cancerous versus non-cancerous tissues. These 

advancements are transforming the way radiologists 

and oncologists approach cancer diagnosis, offering 

more personalized treatment plans tailored to the 

specific needs of each patient. Deep learning models 

are highly effective in image analysis but it requires 
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large datasets of labeled medical images to achieve 

optimal performance. This poses a challenge in 

gynecological oncology but it has limitation that there 

is lack of labeled data. Additionally, widespread 

clinical adoption is another issue related to the 

interpretability of ML models. Traditional machine 

learning models, while easier to interpret, may not 

achieve the same level of diagnostic accuracy as seen 

in more complex AI systems like deep learning 

networks. 

 

3. Method Used 

In this section, the methodology adopted for 

performing systematic meta-analysis for the 

identification of the role of AI/ML in the detection of 

gynecological tumors or cancer. For this systematic 

meta-analysis is performed. The flowchart of paper 

selection for meta-analysis is presented below in Fig. 

2. 

 

Fig. 2. Methodology used for systematic meta-analysis  

The flowchart outlines the systematic meta-

analysis process for identifying the role of AI/ML in 

the detection of gynecological tumors or cancer. The 

process begins with defining the objective of the 

systematic meta-analysis. In this paper, the objective 

is to present a systematic review and meta-analysis for 

role of AI/ML for automatic detection and correlation 

of gynecological cancers such as endometrium cancer, 

cervical cancer, ovarian cancer, etc. This paper aims to 

analyze the imaging technologies for women health 

diagnosis by detecting gynecological cancer. To 

achieve these objectives, relevant keywords are 

chosen to perform the literature search. These 

keywords could include terms such as “AI in 

gynecology,” “machine learning for cancer detection,” 

“gynecological tumors,” “medical imaging for 

gynecological tumors detection,” and “AI for 

gynecological diagnosis.” After determining the 

keywords, suitable scientific databases were selected 

for the literature search. Common databases may 

include IEEE Xplore, Science direct, Springer, Wiley, 

etc. that contain relevant studies on AI/ML and 

gynecological cancer detection. A selection strategy 

was applied to filter relevant research papers from the 

selected databases. This may involve screening by title, 

abstract, and keywords to identify studies that align 

with the research objectives. Then, inclusion and 

exclusion strategy was applied to further refine the 

selection. Inclusion criteria could involve selecting 

studies focused on AI/ML methods for medical 

imaging in gynecology, while exclusion criteria might 

omit studies that lack sufficient data or focus on 

unrelated medical conditions. The filtered studies were 

assessed for relevance to the research topic. If a study 

is deemed not relevant, the search is modified to refine 

the keywords or selection criteria. If the study is 

relevant, it is included for further analysis. Relevant 

studies were subjected to meta-analysis and analysis 

to draw conclusions about the overall impact of AI/ML 

techniques on the diagnosis of gynecological disorders. 

After the meta-analysis, the results were critically 

analyzed to identify the strengths and limitations of the 

AI/ML approaches. 

 

4. Detection Using Machine Learning Based on 

MRI Images  

For medical diagnosis, MRI findings are 

considered one of the most important inputs. To better 

understand the patterns in MRIs, ML extracts 

characteristics more precisely (Subramanian et al., 

2023). These characteristics may be the tissue texture, 

shape, intensity, and spatial connections. These need 

to be identified and learned properly to distinguish 

between healthy and malignant regions in MRI images 

(Baydoun et al., 2021). To provide the capability of 

early prediction, ML models may be trained to identify 

patterns and distinguish certain biomarkers (Zhang & 

Han, 2020). Additionally, segmentation methods can 

accurately identify the tumor borders by applying ML 

techniques that will provide valuable information to 

doctors for planning, tracking, and treating 
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gynecological disorders  (Guo et al., 2019; Visalaxi et 

al., 2021). Soğukkuyu and Ata (2022) proposed an 

ensemble strategy for predicting the risk of cervical 

cancer. Keymasi et al. (2018) categorized pap-smear 

pictures using various ML techniques to increase 

prediction accuracy. KNN, SVM, and multilayer 

perceptron (MLP) are three ML approaches that are 

combined in the ensemble methodology. Jiang et al. 

(2021) used multi-parametric MRI data to construct 

radiomics algorithms that are based on deep learning, 

which are used for the detection of cervical cancer.  

Wang et al. (2021) developed a methodology based on 

deep learning that distinguishes between malignant 

and benign ovary lesions using CNN as opposed to 

using conventional MR imaging. A single institution 

divided 451 patients’ 545 lesions—379 normal and 

166 malignant—into 7:2:1 training, validation, and 

evaluation sets. Ghoneim et al. (2020) presented a 

technique for the identification and classification of 

cervical cancer cells that is based on CNN. Following 

this step, the input images are assigned categories 

using a classifier that is driven by an extreme machine 

learning (ELM). Transfer learning and fine-tuning are 

the two methods that are employed to use the CNN 

architecture. In addition to the ELM, classifiers based 

on autoencoders and multilayer perceptrons are also 

being researched as potential replacements. Ratul et al. 

(2022) carried out a logical analysis to show the 

efficiency of the MLP method with default 

hyperparameters and obtained 93.33% prediction 

accuracy. Wang et al. (2023) offered a unique optical 

biopsy technique to help surgeons quickly and reliably 

diagnose ovarian cancer. Khuriwal and Mishra (2018) 

showed how AI may be used with the UCI Database to 

identify breast cancer. Kurnianingsih et al. (2019) used 

a mask regional CNN (Mask R-CNN) on the pap 

smear dataset to assess the cancerous cells. Arora et al. 

(2021) used SVM and achieved an accuracy of 95%. 

The author also used the Gaussian filter for image 

denoising. Bnouni et al. (2021) suggested an ensemble 

preprocessing technique to boost a CNN’s 

classification accuracy for cervical cancer. Table 1 

presents the overview of recent research on MRI 

images for detection of gynecological cancer. 

 

5. Detection Using Machine Learning Based on 

Ultrasound Images  

In gynecology, ultrasound imaging is a 

frequently used diagnostic technique for the 

identification and assessment of gynecological 

malignancies. To better analyze ultrasound data and 

diagnose gynecological cancer, ML algorithms have 

shown potential (Zhang & Han, 2020). Algorithms are 

used in ML-based techniques to categorize anomalies, 

extract useful information from ultrasound pictures, 

and assist in the early diagnosis of gynecological 

cancers (Zhang et al., 2023). ML algorithms can 

examine ultrasound images by identifying 

characteristics like vascularity, echogenicity, texture, 

and spatial connections (Ruchitha et al., 2021). Studies 

have revealed that ML-based methods may improve 

diagnostic precision by using ultrasound images 

(Marques et al., 2019). Ultrasound images can be used 

in environments with minimal resources due to their 

portability and accessibility (Behboodi et al., 2021). 

Arezzo et al. (2022) used ML to detect cancer on 

Table 1. Recent literature on MRI-based gynecological cancer detection integrated with AI/ ML 

 

Ref. Year Methods used 
Imaging 

modality 
Type of cancer Result 

Soğukkuyu & Ata (2022) 2022 Multiple ML methods MRI Cervical cancer Accuracy = 97% 

Keymasi et al. (2018) 2018 KNN, SVM MRI Cervical cancer Accuracy = 97.83% 

Jiang et al. (2021) 2021 
Deep learning-based 

radiomic methods 
MRI 

Early-stage cervical 

cancer 

AUC = 91.1% 

Sensitivity = 88.1% 

Wang et al. (2021) 2021 CNN MRI Ovarian cancer 
Accuracy = 87% 
Sensitivity = 75% 

Ghoneim et al. (2020) 2020 CNN, MLP MRI Cervical cancer Accuracy = 99.5% 

Ratul et al. (2022) 2022 
KNN, DTC, SVM, RFC, 

MLP 
MRI Cervical cancer 

MLP performed best 

with accuracy = 

93.33% 

Wang et al. (2023) 2023 End-to-end deep learning MRI Ovarian cancer Accuracy = 99.7% 

Arora et al. (2021) 2021 SVM MRI Cervical cancer Accuracy = 95% 
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ultrasound data. Gao et al. (2022) intended to create a 

deep CNN system that automates ultrasound image 

interpretation and makes ovarian cancer detection 

easier than with current techniques.  Srivastava et al. 

(2020) obtained sample ultrasound pictures of the 

ovaries from various women and identified the 

presence or absence of ovarian cysts. The standard 

VGG-16 model is used in the proposed research and is 

tweaked using an exclusive dataset of ultrasound 

images. A 16-layer DL-NN trained on the ImageNet 

dataset is a VGG-16 model. The last four layers of the 

VGG-16 network are changed to adjust the network. 

Kiruthika et al. (2020) presented an artificial neural 

network to construct an intelligent automated 

detection and ovarian categorization for ovary 

detection was given three texture characteristics. Zhou 

et al. (2021) evaluated the usefulness of tumor feature 

extraction on DBN for cancer of the cervical cavity 

patient diagnosis and to accomplish a smart 

assessment of the impacts of therapy and cervical 

detection of cancer. This technique was then used to 

analyze tumors automatically using a 

DBN architecture. 

The proposed framework for tumor extraction of 

features based on the DBN was shown to have a 

superior accuracy of 86.36%, sensitivity of 83.33%, 

and specificity of 87.50 %. Taleb et al. (2022) have 

shown the capability of ML for accurate recognition of 

ovarian cancer and its stages. The majority of current 

studies on ovarian cancer employ a single 

categorization model, which has poor diagnostic 

efficacy. Chen et al. (2021) proposed a 3D CNN based 

on a domain-knowledge-guided temporal attention 

module and a channel attention module. On a dataset 

of 221 breast-CEUS patients, the author validated the 

model. Hyun et al. (2020) proposed a 4-layer CNN to 

identify MB signatures without causing any damage. 

Goudarzi et al. (2023) studied the segmentation 

approach on ultrasound images with a Dice Score 

Coefficient (DSC) of 0.940.08 and 0.920.06, 

respectively. The CutMix augmentation technique 

enhances the generalization performance of the 

proposed CNN, which is tuned for accurate automated 

segmentation of tissue layers. Table 2 presents the 

overview of recent research on ultrasound images for 

detection of gynecological cancer. 

 

6. Detection Using Machine Learning Based on 

Metabolic Parameters  

Machine learning algorithms may use a variety of 

health factors in addition to medical imaging to 

diagnose gynecological cancer. These health 

indicators include blood test results, metabolic test 

results, PCOS, PCOD, and other pertinent clinical data 

(Coffin et al., 2023). To identify risk variables, 

Table 2. Recent literature on ultrasound-based gynecological cancer detection in integration with AI/ML 

 

Ref. Year Method 
Imaging 

modality 

Type of 

cancer 
Result 

Arezzo et al. (2022) 2022 RF, LR, KNN Ultrasound Ovary cancer 

Accuracy = 93.7% 

Precision = 90%  

Recall = 90% 

Gao et al. (2022) 2022 D-CNN Ultrasound Ovary cancer 
AUC = 91.1% 

Accuracy = 86.9% 

Srivastava et al., (2020) 2020 VGG-16 Ultrasound Ovary cancer Accuracy = 92.11% 

Kiruthika et al. (2020) 2020 ANN Ultrasound Ovary cancer Accuracy of 96% 

Zhou et al. (2021) 2021 DBN Ultrasound 
Cervical 

cancer 

Accuracy = 86.36% 

Sensitivity = 83.3% 

Specificity = 87.50% 

Taleb et al. (2022) 2022 SVM, KNN Ultrasound Ovary cancer Accuracy = 98.1% and 97.16% 

Chen et al. (2021) 2021 3D CNN Ultrasound Breast cancer 
Sensitivity of 97.2% and an accuracy 

of 86.3%. 

Hyun et al. (2020) 2020 4-Layer CNN Ultrasound Breast cancer 

Generalized contrast-to-noise ratio 

(GCNR) of 0.93 and Kolmogorov-

Smirnov statistic (KSS) of 0.86 

Goudarzi et al. (2023) 2023 
Gated Shape 

CNN 
Ultrasound Breast cancer DSC = 94% and 92 % 
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forecast disease development, and give a tailored risk 

assessment for gynecological cancer, ML algorithms 

may combine and evaluate this information. ML 

algorithms may be used to create prediction models for 

gynecological cancer risk assessment using health 

factors like blood test results and metabolic test results. 

ML models may establish relations among certain 

biomarkers, patterns, or characteristics that can 

increase the risk of developing gynecological 

malignancies (Harish et al., 2023; Tiwari et al., 2022). 

ML algorithms are capable of enhancing the 

identification and management of gynecological 

cancer by analyzing the health metrics or genetic 

matrices to present personalized risk assessments and 

treatment recommendations (Harish et al., 2023). ML 

can analyze medical data to identify risk factors and 

early signs of cancer and also enable medical experts 

to provide early interventions like lifestyle 

adjustments or preventive measures. Bharati et al. 

(2020) discussed the data-driven approach to 

diagnosis of PCOS in women. The model has achieved 

91.01% of accuracy and 90% of recall value. Poorani 

and Khilar (2023) categorized whether a woman has 

PCOS. Denny et al. (2019) provided a method for the 

timely diagnosis and prognosis of PCOS by making 

use of clinical and nutritional markers that are ideal 

and minimal but still helpful in predicting the presence 

of the condition. The 541 women who participated in 

this study provided the data sets that were necessary 

for the construction of this framework. A variety of 

different ML techniques are used to categorize PCOS 

utilizing the accumulated set of characteristics that 

were altered using principal component analysis 

(PCA). Chitra et al. (2023) diagnosed PCOS via 

ultrasound images by using transfer learning 

approaches such as Alexnet and Inception. Harish et al. 

(2023) identified that PCOS is a serious condition that 

affects females when their ovaries are fertile, between 

the ages of 15 and 45. This disease affects 5–10% of 

reproductive-age females. Despite the difficulty in 

fully treating this condition, PCOS-affected women 

may minimize their symptoms by getting the right 

amount of exercise, eating well, and maintaining a 

healthy BMI. Random oversampling triumphs when 

comparing the two equally weighted approaches using 

accuracy. An enhanced AI classifier for PCOS 

diagnosis was developed using 594 ovarian 

ultrasonography (USG) images by (Suha & Islam, 

2022). The proposed technique outperforms previous 

ML-based methods in accuracy and training time. 

Utilizing the recommended expanded method, the 

"VGGNet16" pre-trained algorithm uses a CNN 

architecture as an extractor of features and a stacked 

ensemble algorithm with the "XGBoost" meta-learner 

as an image classification. Khanna et al. (2023) have 

shown an AI method for predicting PCOS in patients 

with fertile patients utilizing heterogeneous ML/DL 

approaches. The author investigated a 541-patient 

open-source dataset. Swapnarekha et al. (2023) 

proposed a predicting model based on random 

oversampling that has proved successful in resolving 

the issue of class imbalance. In this method, the 

optimal model hyperparameters are selected via 

Bayesian optimization. Wang et al. (2022) proposed a 

decision tree-based PCOS-linked cancer detection 

algorithm. Based on the obtained SMFs, a decision 

tree is built, and practical simulations are run on 

separate internal and external cohorts. Bharati et al. 

(2022) presented the statistical approach for women's 

PCOS diagnosis. When the traits are graded, the ratio 

of luteinizing hormone (LH) to follicle-stimulating 

hormone (FSH) is shown to be the most important 

factor. While features are being chosen and eliminated, 

the cross-validation approach is used. Among the 

classifiers utilized on the dataset are voting hard, 

voting soft, and CatBoost. Prasher and Nelson (2023) 

identified the hormone that is most often seen globally 

is PCOS. The ovaries generate a large number of 

microscopic fluid-filled sacs known as follicles, which 

are the root cause of PCOS. The ovaries did not always 

release the eggs, as was to be anticipated. One of the 

best ways to diagnose PCOS early and develop a 

treatment plan for people with this condition is to look 

for numerous follicles on USG scans. Nasim et al. 

(2022) predicted the PCOS by applying ML 

approaches. Based on the CS-PCOS mechanism, a 

unique feature selection method is suggested. 

Prolactin, blood pressure (systolic and diastolic), and 

pregnancy are the key indicators with significant 

influence on PCOS prediction. Through the early 

discovery of PCOS, the work assists the medical 

community in reducing the miscarriage rate and 

offering women a remedy. Table 3 presents the 

overview of recent research on metabolic parameters 

for detection of gynecological cancer. 

 

7. Discussion 

The current study provides insights into the role 

of AI/ML techniques in the detection of gynecological 

cancers through MRI, ultrasound, and metabolic 

parameters. The studies used for meta-analysis are 
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selected to effectively demonstrate the role of ML and 

deep learning models for cancer detection.  

 

For instance, high accuracy has been achieved by 

CNN-based models, as seen in studies by Wang et al. 

(2021) and Ghoneim et al. (2020). This shows the 

trend of using CNN for image-based diagnosis. The 

use of ensemble methods, such as those proposed by 

Soğukkuyu and Ata (2022) and Keymasi et al. (2018) 

show promising improvement in prediction accuracy. 

This indicates a trend toward using hybrid models to 

address the limitations of single-model approaches. 

Our review of the studies using MRI-based detection 

techniques shows that deep learning models like 

CNNs outperform consistently over traditional ML 

approaches such as KNN, SVM, and MLP in detecting 

and classifying gynecological cancers. This is evident 

in studies by Jiang et al. (2021) and Wang et al. (2021) 

where CNN models demonstrated its better 

performance compared to non-deep learning methods. 

Similarly, ultrasound-based detection techniques also 

shows the benefit of usage of deep learning. Both Gao 

et al. (2022) and Srivastava et al. (2020) showed that 

CNN models can improve the accuracy of ovarian 

cancer detection compared to traditional methods. 

However, Taleb et al. (2022) and Chen et al. (2021) 

used the attention modules or domain-guided 

approaches that can further enhance performance. In 

terms of metabolic parameter-based detection, 

researchers showed that integration of metabolic data 

with ML techniques provided a significant 

improvement in cancer risk assessment. Bharati et al. 

(2020) demonstrated how ML algorithms could 

effectively combine metabolic data to predict PCOS-

related ovarian cancer with high accuracy. This trend 

highlights the growing importance of using multi-

modal data to provide a more comprehensive view of 

cancer risk and progression. 

However, several limitations were also identified: 

Many of the studies rely on relatively small 

datasets. MRI and ultrasound datasets are often limited 

in size. To mitigate these limitations, there is a need to 

develop larger and diverse datasets that can help to 

improve the generalizability of AI/ML models. 

While deep learning models such as CNN are 

“black-box” in nature that presents a challenge for 

clinical adoption, Ghoneim et al. (2020) and Chen et 

al. (2021) incorporated more interpretable models 

such as attention models. Hybrid models that combine 

multiple AI/ML approaches could yield better 

outcomes.  

 

8. Practical Implication of Findings 

The meta-analysis presented in this paper shows 

the significant practical implications for the 

integration of AI/ML techniques in clinical 

applications. AI/ML models such as deep learning 

algorithms like CNNs have shown good accuracy for 

identifying gynecological tumors from MRI and 

Table 3. Recent literature on metabolic parameters-based gynecological cancer detection in integration with AI/ ML. 

Ref. Year Methods Metabolic test Type of cancer Result 

Bharati et al. (2020) 2020 LR PCOS Ovary cancer Accuracy = 91.01% 

Denny et al. (2019) 2019 KNN, SVM PCOS Ovary cancer Accuracy = 89.02% 

Chitra et al. (2023) 2023 
Inception V3, Resnet50, 

VGG16 and Hybrid Models 
PCOS Ovary cancer Accuracy = 93% 

Harish et al. (2023) 2023 
SVM, XGBOOST, LR, 

KNN, RF 

Polycystic ovary 

syndrome 
Ovary cancer Accuracy = 96% 

Swapnarekha et al. (2023) 2023 
SVM, Genetic algorithm, 

MLP, ELM 

Polycystic ovary 

syndrome 
Ovary cancer Accuracy = 99.31% 

Wang et al. (2022) 2022 Decision Tree PCOS Ovary cancer AUC = 96.7% 

Bharati et al. (2022) 2022 Ensemble Learning 
Polycystic ovary 

syndrome 
Ovary cancer Accuracy = 91.12% 

Prasher & Nelson (2023) 2023 D-CNN 
Polycystic ovary 

syndrome 
Ovary cancer Accuracy = 99.4% 

Nasim et al. (2022) 2022 Generative NB 
Polycystic ovary 

syndrome 
Ovary cancer Accuracy = 100% 
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ultrasound images. These models can serve as decision 

support tools for radiologists and gynecologists for 

early detection of cancer. By integrating metabolic 

parameters and health indicators, AI/ML models can 

provide more personalized risk assessments and 

treatment recommendations. The use of AI with 

imaging techniques is particularly promising for 

resource-limited environment. Such applications can 

be used in remote areas to facilitate early detection and 

diagnosis of gynecological cancers. This will reduce 

the need for immediate specialist intervention. AI/ML 

systems can minimize diagnostic errors caused by 

human fatigue, inexperience, or oversight. However, it 

has some potential barriers also such as lack of large, 

diverse, and high-quality datasets, hybrid models are 

black-box in nature, resource limitations, complexity, 

etc. 

 

9. Conclusion 

The use of AI/ML approaches to improve the 

detection and treatment of gynecological malignancies 

has gained increasing attention in the past few years. 

Therefore, the goal of this paper is to describe the 

current level of AI research for the diagnosis of 

gynecological tumors using imaging technologies and 

health metabolic parameters. This paper presents a 

systematic meta-analysis that explored these aspects. 

The paper identified that deep learning model as well 

as hybrid or ensemble learning models outperforms 

better diagnosis either it is MRI imaging or ultrasound 

imaging approach. Whereas, on cancer risk 

assessment, metabolic parameters were also 

considered and its diagnosis hybrid model also 

outperforms well. Whereas potential barriers were also 

identified in this research, such as lack of large, 

diverse, and high-quality datasets, hybrid models are 

black-box in nature, resource limitations, complexity, 

etc. These aspects will need to be focused in future for 

improvement. 
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