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Abstract

Bayesian networks are powerful analytical models in machine learning, used to represent probabilistic relationships 
among variables and create learning structures. These networks are made up of parameters that show conditional 
probabilities and a structure that shows how random variables interact with each other. The structure is shown by a 
directed acyclic graph. Despite the NP-hard nature of learning Bayesian network structures, there has been significant 
progress in improving the accuracy of approximation solutions. The main focus is on score-based search strategies, 
which make use of functions to evaluate network models and identify structures with high scores. This study is 
significantly focused on structure learning Bayesian networks using the Bayesian Dirichlet equivalent uniform scoring 
function and metaheuristic search strategies. To this end, this paper presents the sparrow optimization algorithm 
(SOA), a new metaheuristic algorithm derived from the foraging behavior of sparrows. SOA performs a concurrent 
optimization in the solution space by simultaneously performing a local and global search that leads to the discovery 
of near-optimal structures. The results from our experiments on several benchmark datasets show that SOA yields 
overall better performance than SA and greedy search algorithms. In particular, it is claimed that by applying the 
proposed approach of SOA, the convergence speed is significantly higher compared with the existing ones; F1 score 
is 0.35 and 0.05 for the Hamming distance with better results. Given these results, signed operators prove to be very 
efficient in SOA’s Bayesian network structure learning as a concept, especially for real-world use.

Keywords: Search and Score, Global and Local Search, Bayesian Network, Sparrow Search Optimization Algorithm, 
Structure Learning

1. Introduction
The Bayesian network is widely regarded as a 

widely used analytical model in machine learning for 
constructing the probabilistic framework of knowledge 
(Ji et al., 2012). It is feasible to employ knowledge 
design, reasoning, and inference systematically 
(Fortier et al., 2013). A directed acyclic graph (DAG) 
is utilized to illustrate the structure of a Bayesian 
network, consisting of two fundamental elements: the 
network’s parameters and its structure. The structure is 
used to express dependencies on variability, whereas 

the parameters are employed to describe conditional 
probabilities. The task of addressing the learning 
structure of a Bayesian network might be challenging 
in the absence of a well-defined search plan. However, 
significant efforts have been made to develop 
approximation algorithms for acquiring knowledge 
about the network structure. Achieving the appropriate 
NP-hard class is necessary to overcome the challenges 
associated with learning the structure of a Bayesian 
network from a dataset (Li & Chen, 2014). The main 
components of structural learning in Bayesian networks 
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are two distinct processes. While the second strategy 
employs a combination of score and search tactics, the 
first approach is focused on constraints (Margaritis, 
2003). Until the desired metric value is reached, the 
scoring and search approach is used to methodically 
evaluate each potential network structure and explore 
the range of Bayesian network configurations. Using 
a function to evaluate the network and the provided 
data to maximize the score – the intended result – is 
the basis of score-based approaches (Fast, 2010). The 
Bayesian score and the information-theoretic score 
are the two primary criteria used to generate the score 
function approach. Bayesian networks are valuable 
tools in decision-making processes because they can 
discover connections between variables and make 
predictions utilizing uncertain data. The search and 
scoring component performs an essential part of the 
Bayesian network structure learning (BNSL) process. 
The process involves examining several potential 
network structures and assessing their suitability by 
utilizing scoring criteria that determine their level of 
compatibility. The complexity increases with the rise 
in the number of variables, leading to a significant 
expansion in the number of possible DAGs that can 
represent the relationships between variables. As the 
number of variables grows, a typical issue that arises is 
the NP-hard problem, which occurs in the majority of 
search spaces. The NP-hard problem of BNSL relates 
to the difficulty of determining the optimal network 
structure for a given dataset. This problem becomes 
more difficult when using search and scoring methods, 
which require analyzing a wide range of possible 
structures of networks and evaluating their sufficiency. 
The NP-hardness arises from the exponential growth 
of the search space with an increasing number of 
variables. This makes it practically impossible to 
thoroughly search over all possible options, particularly 
for huge datasets.

The application of the information-theoretic 
score involves the utilization of several techniques, 
such as mutual information tests, minimum description 
length, normalized minimum likelihood, log-
likelihood, Akaike information criterion, and Bayesian 
information criterion. The Bayesian score is utilized in 
several approaches, such as BDe (Bayesian Dirichlet, 
where “e” represents likelihood-equivalency), BDeu 
(Bayesian Dirichlet equivalent uniform, where “u” 
denotes uniform joint distribution), and K2 (Cooper & 
Herskovits, 1992).

The complexity of structure learning can be 
enhanced through the utilization of diverse search 
strategy approaches. The literature includes references 
to several algorithms, including Bee Colony (Li & Chen, 
2014), Swarm Intelligence (Cowie et al., 2007), Ant 
Colony (Salama & Freitas, 2012), Hybrid Algorithm 
(He & Gao, 2018; Kareem & Okur, 2018; Li & Wang, 

2017), Simulated Annealing Algorithm (Hesar, 2013), 
Bacterial Foraging Optimization (Yang et al., 2016), 
and Genetic Algorithms (Larrañaga & Poza, 1996). 
Numerous algorithms have been examined in the 
existing body of literature (Djan-Sampson & Sahin, 
2004; Fan et al., 2014; Orphanou et al., 2018; Yuan 
et al., 2011; Rahier et al., 2019). Several algorithms have 
been proposed in the literature, such as the Breeding 
Swarm Algorithm (Khanteymoori et al., 2018), Binary 
Encoding Water Cycle (Wang & Liu, 2018), Pigeon 
Inspired Optimization (Kareem & Okur, 2019), 
Cuckoo Optimization Algorithm (Askari & Ahsaee, 
2018), and Minimum Spanning Tree Algorithm (Sencer 
et al., 2013). The utilization of swallow optimization, 
a cutting-edge metaheuristic approach, is prevalent 
in the field of structure learning within Bayesian 
networks. This study presents a novel approach to 
address the difficulty of acquiring knowledge about the 
architecture of Bayesian networks. This study provides 
a comparative assessment of the technique mentioned 
earlier. This paper presents the sparrow optimization 
algorithm (SOA), a new metaheuristic strategy 
based on sparrows’ foraging habits in enhancing the 
structure learning of Bayesian networks. SOA does the 
concurrent running of both local and global searches, 
thereby improving the discovery of almost optimal 
structures. In this paper, benchmark datasets are used 
to establish the superiority of SOA over conventional 
algorithms such as SA and greedy search, especially in 
terms of convergence rate and accuracy. The proposed 
algorithm can be considered very efficient – it does not 
take a long time to produce results and seems perfectly 
capable of dealing with big data. This work emphasizes 
that SOA can greatly enhance the speed of the BNSL 
while yielding much better results than other similar 
approaches.

The subsequent sections of this study are 
organized in the following manner: Section 2 provides 
an explanation of the principles underlying structure 
learning in Bayesian networks. Section 3 provides a 
concise summary of the SOA. Section 4 delves into the 
approach extensively and presents the experimental 
findings. The conclusions are presented in Section 5.

2. Structure Learning of Bayesian Networks
The composition of a Bayesian network has two 

distinct components, namely G and P. A DAG is the 
main category, consisting of a finite set of vertices (or 
nodes), V, that are connected by specified edges (or 
links), E. The representation of it is denoted by the 
symbol G(V; E). The equation P = P (Xi | Pa (Xi)) 
describes the collection of conditional probabilistic 
distributions that are unique for each variable Xi, which 
corresponds to the vertices in a graph. In addition, it 
should be noted that the function Pa(Xi) represents the 
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collection of parents of node Xi inside graph G (Cowie 
et al., 2007). This model enables the depiction of a 
basic probabilistic combination for a (G; P) network in 
the following way:

P (Xi, …Xn)=Пi=1 P(Xi| Pa(Xi)) (1)

On the other side, the scoring system is dependent 
on several criteria, such as the minimal length of 
description, information and entropy, and Bayesian 
approaches (Campos, 2006). The posterior likelihood 
of the Bayesian network can be represented according 
to the principles of Bayesian inference as follows:

P(G/D) = P(D/G).P(G)/G’P(D/G’) (2)

The marginal likelihood P(D|G) in Eq. (2) is 
defined as follows using the normality constant P(D):

P(G/D) = ∫ P(D/G, ) P(/G) d (3)

The prevailing belief is that P(D) does not 
constitute a component of the structure of G’s Bayesian 
network. The variable represents the parameter of the 
model, whereas the prior probability is given as P(G’). 
Hence, it is possible to calculate the next distribution 
of the network structure, provided that the marginal 
probability of all potential topologies has been 
determined (Zhang & Liu, 2008). Structure learning 
approaches utilize score-based tactics by integrating 
the current and historical scores of the structure. The 
eventual representation of the score is (Heckerman 
et al., 1995):

Score (G, D)=Ʃ Score(Xi, Pa(Xi),D(Xi, pa(Xi))) (4)

3. SOA
Metaheuristics refer to methods that draw 

inspiration from nature and are used to find possible 
solutions to complex computational optimization 
problems. Animals such as fireflies-BAT (Reddy & 
Khare, 2016), cuckoos (Gadekallu & Khare, 2017), 
ants, pigeons, fish, bees, and others have utilized their 
swarming behaviors in metaheuristics (Gandomi et al., 
2013). The metaheuristics possess several fundamental 
qualities, including uniformity, flexibility, illation-free 
instruments, and the capability to ignore local optima 
(Mirjalili et al., 2014). The metaheuristic algorithm 
proposed by Segundo et al. (2019) is derived from the 
sparrow routine, which is used for hunting food. The 
SOA method is a reliable and resilient method designed 
for addressing stochastic population-based problems 
that require complex configurations involving several 
parameters and operating in three stages.

The recommended process was impacted by 
the way sparrows forage, that is, how they look 

for food when they are in the air. The sparrow is 
a solitary creature that adapts its hunting strategy 
based on its needs. Nevertheless, distinct strategies 
emerge, and impressive models adhere to the essential 
principles of flight and navigation in a secure area, as 
supported by many research findings (Tucker, 1998; 
2000). The objectives are assessed for the maximum 
level of flying accomplishment during different 
stages of delicate searching or hunting (Hedenström 
et  al., 1999). The implementation methodology of 
flying in the framework involves the computation 
of the mechanical power required for navigation, 
determining the average speeds throughout the flight, 
and adapting to wind conditions (Hedenström et al., 
1999). The sparrow is one of the fastest creatures in the 
world. The main hunting or searching activity takes 
place throughout the day, including in the morning. 
The prime source of nutrition is derived from minor to 
medium-sized prey and occasionally includes insects 
(Dekker, 2009).

Based on the above description of sparrows, the 
authors are able to formulate a mathematical model for 
developing the sparrow search algorithm. To simplify 
matters, they conceptualized the subsequent actions of 
the sparrows and devised related principles.
(i) Producers often possess abundant energy reserves 

and offer browsing locations or instructions for all 
scavengers. Its primary function is to detect and 
locate regions abundant in healthy food resources. 
The energy reserves are contingent upon the 
individuals’ fitness values being evaluated.

(ii) When the sparrow recognizes its attacker, it starts 
chirping as an alerting signal. If the signal value 
outstrips the safety threshold, the producers must 
direct all those searching for resources to the 
designated safe region.

(iii) Every sparrow has the probability to suit a 
producer by seeking out improved food sources, 
but the ratio of production to scroungers remains 
constant among the entire population.

(iv) Sparrows with greater energy levels would 
function as producers. A group of famished 
scavengers will be more inclined to migrate to 
diverse positions in search of meals to acquire 
additional energy.

(v) The scavengers trail behind the producer that can 
offer the highest quality nourishment to forage for 
food. Meanwhile, certain opportunistic individuals 
may continuously surveil the producers and 
engage in food competition to enhance their 
predation ratio.

(vi) When sparrows on the outside of the group 
become aware of danger, they promptly move to 
a secure region to achieve a more advantageous 
situation. Conversely, sparrows situated in 
the center of the group exhibit unpredictable 
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movement patterns to maintain proximity to 
their peers. During the simulation experiment, 
the authors must use virtual sparrows to find 
sustenance. A specific matrix depicts the spatial 
distribution of sparrows:
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Each item in the “FX” array represents the fitness 
value of a single sparrow, whereas the variable “n” 
shows the total number of sparrows. During the search 
phase in the SOA, food is prioritized for those with 
higher fitness values. Furthermore, producers also take 
on the responsibility of acquiring food supplies and 
directing population movement as a whole. Because of 
this, the producers are able to look at a wider variety of 
resources for food than the scavengers. The producer’s 
location is changed at each iteration in the following 
ways, per rules (i) and (ii):
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In this context, the variable t shows the current 
iteration, while j ranges from 1 to d. The notation 
V_(i,j) t represents the value of the jth dimension of 
the ith sparrow at iteration t. The term “itermax” is a 
constant that denotes the upper limit of iterations. Let 
α denote a random number that falls within the interval 
(0, 1). The variable R2, which ranges from 0 to 1, 
denotes the alert value. ST, where ST ranges from 0.5 
to 1.0, denotes the safety level. The variable Q exhibits 
stochasticity and adheres to a normal distribution. The 
matrix L is a vector space with dimensions 1 × d, 
where each element is equal to 1. In instances where 
the resource-to-search ratio (R2) falls below the search 
threshold (ST), signifying the lack of predators, the 
producer commences the wide search mode.

If the value of R2 is greater than or equal to ST, 
it indicates that certain sparrows have become aware 
of the predator’s presence, and each sparrow needs 
to rapidly reposition to alternative secure locations. 
Regarding the individuals who scrounge, it is necessary 
to implement and uphold regulations (iv) and (v). 
As previously said, certain scavengers monitor the 
producers with greater frequency. Upon discovering 

that the producer has located high-quality sustenance, 
they promptly abandon their present location to vie 
for nourishment. If they emerge victorious, they will 
promptly obtain the producer’s food. Otherwise, 
they will persist according to the guidelines (v). The 
formula for updating the position of the scrounger is 
described as follows:
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The parameter “XP” shows the optimal position 
set by the manufacturer. The abbreviation Xworst 
describes the current world position that is usually 
viewed as the most unfavorable. The matrix A is a 1 ò 
d matrix in which each element is assigned a random 
value of either 1 or Ω1. A+ is the result of multiplying 
the transposition of A by the inverse of the product of 
A and its transpose. If the value of i exceeds n/2, it 
means that the ith scrounger with the lowest fitness 
rating is highly probable to be facing starvation. In 
the simulated experiment, it is assumed that a subset 
of the sparrow population, totaling around 10–20% of 
the total, possessed knowledge of the potential risk. 
The origins of these sparrows are created in a random 
manner inside the population. The mathematical model 
can be denoted in accordance with rule (vi) as follows:
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The notation “Xbest” indicates the current global 
optimal condition. The step size parameter, represented 
by β, is distributed normally, with a variance of 1 and 
a mean of 0. The variable K is restricted and denotes 
a stochastic number inside the interval [−1, 1]. The 
variable fi signifies the current sparrow’s fitness value. 
fw represents the current global lowest fitness value, 
whereas fg represents the current global maximum 
fitness value. The constant ε is the minimum value 
needed to avoid division by zero errors. To make 
things easier to grasp, the sparrow is close to the 
group’s edge when fi > fg. Xbest reliably illustrates 
the location of the population center and ensures its 
security in the surrounding area. The equation fi = fg 
indicates that the sparrows, which are in the interior of 
the population, are aware of the threat and are forced 
to fly toward the other members of the group. The 
variable K represents the path of the sparrow’s drive as 
well as the coefficient that controls the step’s size. The 
pseudo-code algorithm, which is generated from the 
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conception and viability of the previously described 
model, may be used to define the basic operations of 
the service-oriented architecture (SOA).

4. SOA For Bayesian Network Structure Learning
The approach that is proposed makes use 

of the SOA paradigm as a search tool to explore 
Bayesian network architecture. The architecture of 
a Bayesian network is evaluated using a measure 
called BDeu. The SOA algorithm is an iterative 
procedure that considers a population of sparrows 
and assigns a prospective position and velocity to 
each bird within a predetermined area. The search 
zone is defined as this area. The suggested approach 
makes use of several strategies. The first method 
uses Eq. (8) to investigate the necessary process 
if (R2 < ST). Equation VII is used in the alternate 
method if this requirement is not satisfied. Proceed 
with the required procedure if the value of i exceeds 
n divided by 2. To get the ideal location given in 
Eqs. (8) and (9), compare the BDeu score functions 
of the two phases. The pseudocode for this method 
is shown in Fig. 1. In the process of building the 
SOA algorithm’s answer, several neighborhoods in 
the search space are used. We formulate the solution 
for learning the structure of Bayesian networks for 
each prospective DAG. Every sparrow is a DAG 
with empty arcs that symbolize a possible solution. 
After that, a sparrow searches the exploration zone 
for the best or almost the best solution, also known 
as the BDe score. The BDeu score, which performs 
as the optimization procedure’s objective function, 
is calculated by Eq. (4). The investigation’s goal is 
to raise the network structure’s BDeu score. All first 
solutions are produced by iterative actions. Arcs 
are added consecutively to an empty graph (G0), 
provided that they are not already included in the 
graph solution. Only carry out the append operation 
in the event when the new solution’s score function is 
higher than the previous score and it conforms with 
the DAG limitation. Until the predefined number of 
arcs is reached, this process is repeated. Allocating a 
population to each operator in the model and choosing 
the solution with the greatest score function is the first 
step in the procedure. The Sparrow algorithm iterates 
indefinitely, either till the all-out number of iterations 
is touched or until the BDeu score stops increasing.

The operations conducted in this particular 
domain frequently involve the substitution of a 
solitary edge from a rival solution, resulting in a 
cumulative count of four substitutions. Incorporating 
a relatively restricted region near the solution allows 
for better integration. Every movement operation 
induces modifications to the set of parents of the 
existing edges, leading to a substantial adjustment 

to the current solution. Furthermore, if the solution 
stays unchanged after the application of fundamental 
operators, the move operator possesses the capability 
to improve it. The frequency of escape as a sparrow 
approaches the intended solution exhibits an upward 
trend in the context of local optimization. As the 
sparrow swiftly moves from one solution to another 
in its search for a superior one, the utilization of fly 
directions, which entails alternating between numerous 
local optimization operators, becomes increasingly 
common. As an outcome, the present velocity is 
altered by employing either the optimal global or 
local solution of the sparrow, which is decided by the 
R2 value and some optimization techniques such as 
deletion, addition, reversion, and movement.

The fundamental idea of DP is covered in the 
first three operations. The SOA updates its velocity 
based on the sparrow’s current optimum position 
inside the search space. Conversely, the optimal 

Fig. 1. SOA for structure learning Bayesian network

Algorithm: The Bayesian network structure is derived from the 
Sparrow search optimization method. 

INPUT: - benchmarks
Population size, NS
- Maximum iteration, MaxIter
- Discovery rate, Pa
- Awareness probability, Pb
- Learning probability, Pl
- Maximum velocity, Vmax
- Initial position bounds, Xmin, Xmax
OUTPUT:
- Bayesian Network Structure
OUTPUT: - learning Bayesian Network
Algorithm:
1. Initialize Sparrows randomly within the search space:
  a. Randomly generate initial positions for NS sparrows.
  b.  Initialize velocities for each sparrow randomly within 

[-Vmax, Vmax].
2.  Evaluate the fitness (BDe score) of each sparrow based on the 

Bayesian Network Structure.
3. Set the best solution as the sparrow with the highest fitness.
4. For each iteration (iter) up to MaxIter:
  a. For each sparrow (i) in the population:
  i. Generate random values R1 and R2.
  ii.  Update velocity and position using the Sparrow Search 

Algorithm equations:
 -  Velocity update: V_i = W * V_i + Pa * R1 * (P_best - X_i) + 

Pb * R2 * (G_best - X_i)
 - Position update: X_i = X_i + V_i
   (where W is the inertia weight, P_best is the greatest position, 
G_best is the global best position)

  iii.  Apply a random selection mechanism with probability Pl to 
update part of the position.

  - If rand() < Pl, update a portion of the position randomly.
  iv.  Clamp the position within the search space [Xmin, Xmax].
  v. Evaluate the fitness of the new position.
  vi.  If the fitness is better than the current best fitness, update 

the best position.
  b. Update the global best position.

5.  Return the Bayesian Network Structure corresponding to the 
best position found.
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choice for sparrows inside a search zone next to a 
perfect location determines the speed. Fig. 2 depicts 
the activities of a sparrow G0, which is a model of an 
arc-based DAG. The sparrow tries reversal, change, 
addition, and omission to get new solutions G1, G2, 
G3, and G4. Since G3 has the finest score, the sparrow 
will now choose a similar strategy to go on to G+3. In 
the event that the BDe score of G+3 exceeds that of 
G+1, the appropriate operator will be performed. The 
iterative processes will continue until the iteration 
loop achieves its maximum value or the BDe score 
reaches a stable condition. Throughout the whole 
process, the sparrow selects orientations using the 
cognitive processes of Deletion, Addition, Movement, 
and Reversion.

5. Experimental Evaluation
One often-used evaluation approach for 

evaluating the effectiveness of SOA involves 
using probabilistic samples that are taken from 
well-established Bayesian network standards. The 
experimental configuration consists of a personal 
computer with the following characteristics: one 
of the system’s current configurations is a Core i5 
CPU running at 2.1 GHz. With an operating system 
of Ubuntu 14.04, the gadget has 4GB RAM. The 
algorithm is implemented using Java. The details for 
the dataset used in the experimental results are shown 
in Table 1.

In addition, the authors considered a few more 
complex datasets, such as Sonsor, Meta, Bands, 
Voting, Zoo, Horse, and Soybean, which include 
over a thousand variables (Dekker, 2009). Accuracy 
is defined as the number of correctly identified 
directed edges divided by the total number of edges 
in the predicted Bayesian network. The F1-score 
is known as the harmonic average of precision and 
recall. Precision measures the proportion of correctly 
identified directed edges out of all the edges predicted, 
while recall measures the proportion of correctly 
identified directed edges out of the total number of 
edges in the actual Bayesian network. The current 
investigation is based on the supposition that the data 
are stable and that the datasets used for training are 

stationary. Before assessing the efficacy of the SOA 
algorithm just on stationary collections of data, it is 
imperative to thoroughly assess the challenging effort 
of extending its applicability to encompass collections 
or other forms of online flow data sets. The research’s 
authors used simulated annealing, pigeon-inspired 
optimization (PIO), and greedy search to compare 
the outcomes (Kareem & Okur, 2019). They used 
appropriate measurements for the datasets. We defined 
the parameters of the SOA algorithm and then used the 
same parameters to evaluate each approach. For the 
experiment in the field of service-oriented architecture, 
we utilized the numbers tmax = 1000 and N = 100 as 
fixed parameters for the optimization process in SOA. 
The parameters for the service-oriented architecture 
are as follows: the proportion of producers is set to 
20%, and the proportion of SD accounts is set to 
10%, with ST being equal to 0.8. The simulated 
annealing algorithm has the following parameters: the 
reannealing temperature is set at 500°, with a cooling 
factor of 0.8 and an initial temperature of 1000°. The 
following are the parameters for a greedy search: 
three thousand networks is the recommended bare 

Fig. 2. Searching steps for one Sparrow 
(Li & Wang, 2017)

Table 1. Specification of the dataset used
Dataset name Number of arcs/variables Number of 

instances
Andes 338 arcs, 223 variables 500
Lucap02 143 variables 10,000
Win95pts 112 arcs, 76 variables 574
Hepar 123 arcs, 70 variables 350
Hailfinder 66 arcs, 56 variables 2,656
Alarm 46 arcs, 37 variables 10,000
Soybean 35 variables 307
Hepatitis 35 variables 137
Static Banjo 33 variables 320
Water 66 arcs, 32 variables 10,083
Epigenetics 30 variables 72,228
Insurance 52 arcs, 27 variables 3,000
Sensors 25 variables 5,456
Mushroom 23 variables 1,000
Parkinsons 23 variables 195
Heart 22 variables 267
Imports 22 variables 205
Child 25 arcs, 20 variables 230
Letter 17 variables 20,000
Adult 16 variables 30,162
Lucas01 10 variables 10,000
WDBC 9 variables 1,000
Asia 8 arcs, 8 variables 3,000
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minimum before restarting. 1000 is the minimum 
number of networks that is advised once the best score 

has been obtained. Before restarting, a maximum of 
5000 networks are advised. There is no information 

Table 2. Hyperparameters tuning for all methods
Algorithm Hyperparameter Value/Range Description
Simulated Annealing 
(SA)

Reannealing 
temperature

(300, 700) degrees Initial reannealing temperature 
range.

Cooling factor (0.7, 0.9) The range for the factor by which 
temperature decreases.

Initial temperature (800, 1500) degrees Starting temperature range for the 
annealing process.

Greedy Search (GS) Minimum networks 
before restart

(2000, 4000) networks Range for the minimum networks 
before restart.

Minimum networks 
after best score

(800, 1500) networks Range for minimum networks after 
obtaining best score.

Maximum networks 
before restart

(4000, 6000) networks Range for maximum networks before 
restart.

Maximum parent count (3, 7) parents Range for maximum parent count 
during search.

Restart method Random network restart enabled Fixed value (as randomization 
inherently ensures range).

Execution time 2, 5, 10, 60 min Multiple execution timeframes 
tested.

Pigeon-Inspired 
Optimization (PIO)

Search space dimension D ∈ (10, 30) Dimension of the search space.

Population size NP ∈ (200, 500) Range for the number of pigeons.

Maximum iterations 
(map/compass)

Nc1 max ∈ (3000, 7000) Iteration range for map and compass 
operation.

Map and compass factor P ∈ (0.2, 0.5) Factor range for map and compass 
operation.

Maximum iterations 
(landmark)

Nc2 max ∈ (8000, 12000) Iteration range for landmark 
operation.

FOA Algorithm Population size N ∈ (80, 150) Population size range for the FOA 
experiments.

AP AP ∈ (0.25, 0.35) Range of AP values.

Maximum iterations tmax ∈ (800, 1500) Maximum iterations range.

Sc Sc ∈ (2.5, 4.0) Range for Sc.

Cc Cc ∈ (1.5, 3.5) Range for Cc.

Fc Fc ∈ (3, 5) Range for Fc.

Random value range t ∈ (−1.5, 1.5) Expanded range for random value 
initialization.

Vmax Vmax ∈ (0.08, 0.15) ub Velocity upper boundary range.

DP DP ∈ (0.8, 0.9) Range for DP.

Sparrow Optimization 
Algorithm (SOA)

Population size N ∈ (80, 150) Population size range for SOA 
experiments.

Maximum iterations tmax ∈ (800, 1500) Maximum iterations range.

Proportion of producers (15%, 25%) Range for the proportion of 
producers in SOA.

Proportion of SD 
accounts

(8%, 12%) Range for the proportion of SD 
accounts.

ST ST ∈ (0.75, 0.85) Fixed range for ST value.
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on the maximum number of parents for surgeries. 
Table 2 shows the hyperparameters for all methods. 
After 5 min, the system will automatically restart. 
Moreover, there is always the chance of a random 
network restart. Three different execution times for 
the algorithms have been tested: 2, 5, and 60. The 
data in Table 3 display the scores achieved by every 
technique in the specified datasets, along with the 
related time values. Upon examining the data, it is 
evident that the suggested method outperforms the 
predefined greedy search and simulated annealing 
algorithms in all scenarios, yielding superior score 
values. This demonstrates that the SOA is able to 
achieve the highest score in the least amount of time. 
We calculated the confusion matrix for each dataset 
and its corresponding described network structure 
to assess the effectiveness of structure identification. 
Each network has been computed with the metrics: 
True Negative, True Positive, False Negative, and 
False Positive using different algorithms.

Recall TP
TP FN

�
�

 (10)

� �Accuracy TP TN
TP FP TN FN

�
�

� � �
 (11)

F Score TP
TP FP FN

1
2

2
 �

� �
*  (12)

Precision TP
TP FP

�
�

�  (13)

The Recall findings for FOA searching, PIO 
searching, Simulated Annealing, and Greedy searching 
are shown in Fig. 3. In most datasets, the proposed 

technique performs better than the PIO, Simulated 
Annealing, and Greedy algorithms. Similarly, 
Fig. 4 demonstrates that the recommended method 
outperforms the PIO, simulated, and greedy methods in 
terms of accuracy across most datasets. The proposed 
SOA learning algorithm has exceptional efficacy in 
accurately determining the appropriate structure. 
The iterative SOA algorithm demonstrates superior 
prediction accuracy compared to other algorithms 
across the majority of datasets.

Furthermore, in terms of construction times, 
the SOA technique performs better than the other 
approaches. F1 and the highest score from the Bayesian 
findings were used as criteria to estimate the model’s 
accuracy. The F1-score, metric of precision, and 
recall are both used to calculate the effectiveness of 
the recommended strategy. In this context, accuracy is 
defined as the ratio of properly identified directed edges 
to the total number of edges in the proposed Bayesian 
network. By dividing the total number of edges in the 
network by the number of focused edges that were 
successfully recognized, one may determine the recall 
of a Bayesian network. It is widely accepted that the 
F1 statistic represents the harmonic mean of accuracy 
and recall. Fig. 5 compares the simulated annealing, 
PIO search, greedy search, and SOA searching. The 
suggested approaches are more effective than the PIO, 
greedy search, and simulated annealing procedures. 
Furthermore, accuracy is a reliable measure of the 
model’s efficacy because its primary objective is to 
provide a meaningful approximation of the actual 
domain. In terms of Hamming distances, the suggested 
technique outperforms the DAG space and regularly 
yields values that are substantially less.

The precision measure is among the most 
frequently utilized metrics that should provide 

Table 3. BDeu score for FOA, simulated annealing, and greedy was calculated for execution times of 2, 5, and 
60 min
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Fig. 4. Accuracy for SA, Greedy, Falcon, PIO, and SOA

Fig. 3. Recall for SA, Greedy, Falcon, PIO, and SOA

Fig. 6. Precision for SA, Greedy, Falcon, PIO, and SOA

Fig. 5. F1_Score for SA, Greedy, Falcon, PIO, and SOA
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information about the quality of learned Bayesian 
network structures. Comparison of different structure 
learning algorithms is always very clear in presented 
studies, with the ultimate focus on the tradeoff 
between exploration and exploitation of the existing 
models. For instance, Fig. 6 depicts the mean precision 
of different algorithms, which points to the fact that 
the proposed methodology yields better precisions in 
comparison to other methodologies. However, one 
must appreciate that it is quite difficult to get accurate 
measures of the actual network structure, Given the 
realities of real data are often complex and noisy. 
Nevertheless, the above improvements are currently 
under observation and there are continuous attempts 
to overcome the above-mentioned drawbacks. The 
standard learning algorithms are fine, but they are not 
without their shortcomings: they work with previously 
defined models and do not lend themselves well to 
optimizing certain kinds of probabilistic dependencies. 
In the future, a more detailed analysis of the presented 
approach can be made when incorporating other 
optimization methods to improve both the quality of 
learning the Bayesian network and its computational 
complexity. Further, using these algorithms for time 
series data that deal with real-time data could enhance 
the decision-making potential of the model. Another 
area for the work extension in the future is the use 
of domain-specific semantic knowledge to enhance 
the model and make it more precise in dependency 
identification. Therefore, the need to achieve deeper 
theoretical analysis of the convergence properties 
and longevity of accuracy-controlled approaches 
to learning seems to entail more extensive research 
furthering the notion of potential future development 
of related methods.

6. Conclusion
The authors utilized the SOA technique to 

address the issue of learning Bayesian network 
architectures. This study employs a scoring and search 
methodology, utilizing SOA as a search mechanism 
and using the BDeu metric as a scoring function. SOA 
is a stochastic search technique that draws inspiration 
from the navigational behaviors of sparrows. SOA is 
a flexible approach for examining distinct solution 
spaces that may be adjusted to different areas of 
application. The concentration control in SOA enables 
faster convergence to global optima by directing birds 
along logarithmic spirals toward the most favorable 
regions of the solution space. The suggested method 
showcases improved search capabilities, resulting 
in superior structural solutions, larger score function 
values, and accurate approximations of network 
structures. In addition, the algorithms improve the 
overall efficiency of global searches, resulting in 

rapid convergence. Subsequent research will involve 
assessing the extra characteristics of SOA, such 
as runtime analysis, resource consumption, and 
overall efficiency, by employing varied datasets and 
experimental configurations.
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