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Abstract 

Malignant growth of the gastrointestinal (GI) tract is among the leading causes of death worldwide. Research indicates 

that almost 40% of people worldwide suffer from long-term digestive issues. According to a study published in the 

United European Gastroenterology Journal, digestive disorders have increased since 2000. Digestive disorders 

continue to be a major cause of death, even with a slight decline. The World Health Organization’s Mortality Database 

reported huge death rates every year due to GI diseases. From that report, the need to accurately detect GI tract 

malignant in low-cost and error-prone labor must be developed. This work introduces MNET Gastrointestinal Disease 

Detection (MNETGIDD), which is a complete identification model for multi-gastrointestinal disease discovery from 

clinical images. MNETGIDD model uses the Gastrolab dataset with endoscopic images, acting as pipelines that are 

pre-processed and segmented to identify the affected areas.  This proposed approach aims to enhance image quality 

and facilitate accurate segmentation and classification through a pipeline process, initially preprocessing with 

techniques such as text removal, illumination enhancement, and fuzzy histogram equalization. During segmentation, 

Otsu segmentation based on Krill-Herd optimization was used to identify the affected area. The MNETGIDD model 

incorporates the MobileNetV2 architecture, designed for a lightweight classification model working under resource-

constrained environments. According to the tests, the MNETGIDD model exhibits high sensitivity and specificity, 

often outperforming human experts. In terms of accuracy, the model achieved 96.349%, a precision of 96.25 %, and 

a recall of 97.08%. This deep learning system has the potential to revolutionize gastrointestinal disease diagnostics 

and screening by automating key steps and improving patient outcomes. 

Keywords: Fuzzy Histogram Equalization, Gastrointestinal Disease Detection, MNETGIDD, Gastrolab dataset, Low-

light Image Enhancement, Mean-Shift Segmentation, MobileNetV2 

 

1. Introduction 

In the world, cancer is the leading cause of death, 

and gastrointestinal (GI) cancer is the most common 

type. Globally, 1.8 million people die from 

gastrointestinal diseases each year (Sharmila & 

Geetha, 2022), and GI cancer is the fourth leading 

cause of death. Globally, gastrointestinal diseases are 

a significant health burden. The Global Burden of 

Disease Study 2019 reports that digestive diseases 

cause over 2.5 million deaths worldwide, accounting 

for 4.5% of all deaths (Theo, 2019). Globally, 

digestive diseases caused 81.1 million disability-

adjusted life years (DALYs). 
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The growth of GI polyps on the mucosa of the 

stomach and colon is the cause of gastrointestinal 

cancer. The esophagus, stomach, small intestine, large 

intestine, rectum, and anus are some of the parts of the 

digestive tract affected by multi-GI diseases. A 

chronic disease can significantly impact an 

individual’s quality of life. The symptoms, causes, and 

treatments of multi-gastrointestinal diseases differ 

from one type to the next.  An estimated 1.9 million 

new cases of colorectal cancer, one of the four diseases 

examined in this study, will be diagnosed in 2020 

(Sung et al., 2020). Our research also focused on 

gastric cancer, which was responsible for over 768,000 

deaths worldwide in 2020.  There were 600,000 cases 

of esophageal cancer worldwide in 2020. 

Approximately 6.8 million people worldwide suffer 

from inflammatory bowel diseases, including Crohn’s 

disease and ulcerative colitis (Alatab et al., 2020). GI 

diseases have a substantial economic impact. 

According to a 2015 study, digestive diseases cost the 

United States $136 billion annually in direct and 

indirect costs (Perry et al., 2020). Many diseases and 

conditions can affect the esophagus. Inflammation of 

the esophageal lining can cause heartburn and 

swallowing difficulties. Another common condition is 

hemorrhoids, which are caused by inflammation of the 

blood vessels in the anus and rectum. In different parts 

of the digestive tract, polyps can develop, and while 

most are benign, some are cancerous. A type of 

inflammatory bowel disease, ulcerative colitis grade 1 

causes inflammation and ulcers in the colon and 

rectum linings. Because of their complexity, these 

disorders can be challenging to diagnose and treat; 

imaging, lab testing, and invasive diagnostic 

procedures might be required. Recently, a promising 

approach for diagnosing and segmenting multiple 

gastrointestinal diseases was developed using deep 

learning techniques. A computer-aided automated 

approach may be useful for highly accurate polyp 

diagnosis and cancer detection. Artificial intelligence 

(AI) holds immense promise in helping people 

visualize diseases that are invisible to the human eye 

in various medical fields (Ekiri et al., 2016). 

Endoscopy images can be evaluated, and key features 

of micro-imaged structures can be identified using AI 

tools. The following have been made possible by this 

research. 

• The proposed scheme identifies and 

classifies the different GI diseases. 

• By combining segmentation using 

IP and identification techniques via deep 

learning, a novel technique was proposed. 

• Using this method, images for 

training and testing are randomly selected in the 

segmented images without manual intervention 

 

1.1. Aim & Motivation 

Medical practice and healthcare systems 

worldwide can be improved through computer-

assisted early disease detection. Multi-GI disease 

segmentation and identification is a challenging but 

important task that could improve healthcare 

outcomes for millions of people worldwide. A deep 

learning model can enable us to accurately identify 

and segment complex diseases like esophagitis grade 

A, hemorrhoids, polyps, and ulcerative colitis grade 1. 

Improved patient outcomes depend on early 

detection and accurate diagnosis of gastrointestinal 

diseases. In a study by Smith et al. (2022), early 

detection of colorectal cancer can increase 5-year 

survival from 14% to 90%. This study proposed the 

MNET Gastrointestinal Disease Detection 

(MNETGIDD) model as an advanced diagnostic tool. 

A recent advancement in AI and deep learning has 

shown promising results. Based on a meta-analysis 

conducted by Johnson et al. in 2023, AI-assisted 

diagnosis of GI diseases could improve detection rates 

by 30%. 

This work aimed to develop a framework, 

MNETGIDD, for recognizing a wide range of GI 

diseases simultaneously rather than multiple tools 

used individually to detect an anonymous disease. A 

significant improvement over most recent studies is 

that this study considers different types of GI diseases 

(both diseased and normal cases) related to the human 

GI tract. Furthermore, the model proposes a means of 

identifying diagnostic decisions based on deep 

learning techniques. A medical expert can validate the 

computer decision interactively with the assistance of 

such additional information. To address this problem, 

this work proposed a high-performance classifier and 

retrieval framework that uses endoscopic images to 

determine GI diseases using recent AI techniques. 

 

 

1.2. Objective, Challenges and Issues 

Deep learning techniques will be used to develop 

a model capable of accurately identifying the four 

common multi-gastrointestinal diseases: esophagitis 
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grade A, hemorrhoids, polyps, and ulcerative colitis 

grade 1. Deep learning will be used in conjunction 

with imaging data to train the proposed model to 

recognize patterns that may indicate the presence of 

these diseases. With the development of this model, 

the need for invasive diagnostic procedures will be 

reduced, and patient outcomes will improve. A multi-

gastrointestinal disease model can also help healthcare 

professionals diagnose and manage these illnesses. A 

computer-aided diagnosis system was developed to 

aid medical experts in diagnosing different types of 

gastrointestinal diseases. 

A model for segmenting and identifying multi-GI 

diseases is a challenging task that requires 

consideration of several ethical, practical, and 

technical factors. There are several challenges and 

issues associated with this research, including: 

 

• Limited availability of labeled medical 

imaging data: Medical imaging data labeled with 

medical conditions is necessary to develop a 

reliable and accurate model for segmenting and 

identifying multi-GI diseases.  Multi-GI diseases 

can be segmented and identified inaccurately due 

to variations in medical imaging data regarding 

quality, resolution, and imaging modalities. 

Imaging data is often variable, making it difficult 

to generalize models to new and unknown data. 

• Technical complexity of deep learning 

techniques: Developing and implementing deep 

learning techniques like neural networks and 

fuzzy logic require high levels of technical 

expertise. Developing these techniques can be 

difficult in resource-constrained environments 

due to the high computational requirements. 

• Ethical considerations: Medical imaging 

data can raise ethical concerns like confidentiality 

and patient privacy. The protection of patient data 

requires compliance with ethical guidelines and 

regulations. Medical imaging data must be stored 

securely and accessed only by authorized 

personnel. The data should be used only for the 

stated purpose and must not be shared without the 

patient’s consent. All patient data must be deleted 

when no longer needed. 

• Integration with clinical workflows: A 

successful clinical practice is one that integrates 

the proposed model seamlessly into existing 

clinical workflows. The research must examine 

practical and operational aspects for the model to 

be usable and acceptable to healthcare 

professionals. 

 

1.3. Contribution of the Work 

The proposed MNETGIDD mode contains three 

phases: pre-processing, segmentation, and 

classification, which help identify the affected area 

from different types of GI tracts. Each phase’s 

contribution is explained as follows: 

• To improve the image quality 

during pre-processing using the in-painting, 

low-light image enhancement (LIME), and 

fuzzy logic-based histogram equalization (FHE) 

algorithms. 

• To apply the KHO-Otsu automated 

threshold-based algorithm to segment the 

affected area in different disease images. 

• The MNET Model is utilized to 

identify the impacted images within the test set. 

 

 

1.4. Structure of the Paper 

Section 2 reviews the relevant literature, 

including GI-based pre-processing techniques and 

ideas, segmentation techniques, machine learning, 

and deep learning approaches. Section 3 describes the 

proposed scheme of this work and how data was 

collected, pre-processed, segmented, and 

classification modeling techniques were used. The 

results and discussion for pre-processing, 

segmentation, and classification techniques employed 

for the input dataset with its performance evaluation 

are explained in Section 4. Finally, the conclusion of 

this work is described in Section 5.  

 

 

2. Review of Literature 

Sharmila & Geetha (2022) proposed a deep 

learning model that combines a deep CNN with a pre-

trained model, ResNet101, to detect and classify 

abnormalities in the GI tract. A goal of the proposed 

research is the detection of disease in endoscopic 

images. A public dataset of 8,000 images called 

KVASIR forms the basis of the architecture. An 

accuracy of 98.37% was achieved using the 

convoluted neural network (CNN) approach. A higher 

level of recognition is achieved without an 

individual’s assistance in the experiment. 
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The dataset used by An et al. (2022) contained 

data on eight diseases. The data set and parameters 

used in the literature were also compared with those 

used in other studies. The study’s results section also 

provides detailed classification results for eight 

diseases. Wong et al. (2022) implemented deep 

transfer learning for classifying GI 

diseases. Cleansing, standardizing, and transforming 

data are performed after exploratory analysis. To solve 

the classification problem, a pre-trained ResNet50 is 

utilized, which is a CNN with 50 layers. 

Benchmarking and performance metrics were used to 

evaluate the model. According to the results, the 

proposed model showed high stability with consistent 

scores.  

According to Nguyen et al. (2022), upper GI tract 

diseases can be automatically classified using a 

computer algorithm. There are two main components 

to the framework: a CNN based on the ResNet-50 

architecture and a Focal Loss application, as well as a 

geometric transformation, brightness and contrast 

transformation, for revealing hidden characteristics of 

upper GI diseases and anatomical landmarks and for 

dealing with imbalanced datasets. 

Su et al. (2022) demonstrated that their proposed 

method outperforms existing computational methods 

on GI disease screening benchmark datasets. Sharib et 

al. (2021) developed multiple methods to tackle two 

sub-challenges in clinical endoscopy: artifact 

detection and segmentation and disease detection and 

segmentation. Datasets from clinical endoscopy were 

used and algorithms were evaluated for generalization 

ability. Despite most teams focusing on accuracy, only 

a few clinical use methods are considered credible. 

Ekiri et al. (2016) evaluated a real-time polymerase 

chain reaction (PCR) assay for detecting Salmonella 

in fecal samples from hospitalized horses with and 

without GI disease symptoms. Salmonella in the feces 

of horses can be detected with PCR assays targeting 

the Salmonella invA gene. The possibility of 

nosocomial Salmonella infections can also be detected 

through further bacteriologic culture testing. Several 

GI diseases have been classified, segmented, and 

detected by automated methods in a Naz et al. study 

(2021). An in-depth description of these state-of-the-

art methods is presented in the paper. Moreover, 

literature is categorized according to the method used 

for preprocessing, segmentation, and handcrafted 

features-based methods. 

A computer-aided detection method for lower 

gastrointestinal diseases was developed by Al-

Adhaileh et al. (2021) using modified criteria for 

extracting deep shape, color, and texture features and 

adapting them to a transfer method for fine-tuning and 

contouring. Extensive experiments were conducted to 

diagnose lower gastrointestinal diseases. A new model 

was developed for transferring features from a 

nonmedical deep learning dataset and adapting them 

to a medical dataset. Yogapriya et al. (2021) integrated 

traditional image processing algorithms and data 

augmentation techniques with a fine-tuned pre-trained 

deep CNN to classify GI diseases using images 

captured by wireless endoscopy. Concatenating 

VGGNet and InceptionNet networks for the purpose 

of developing a model to diagnose gastrointestinal 

diseases was proposed by Melaku et al. (2022). Deep 

convolutional neural networks VGGNet and 

InceptionNet are trained and used to extract features 

from endoscopic images. By concatenating these 

extracted features, machine learning (Softmax, k-

nearest neighbor, random forest, and support vector 

machine [SVM]) classification techniques were used 

to classify them. Based on the available standard 

dataset, SVM was found to perform better than the 

other techniques. 

An endoscopy image classification system based 

on CNN was proposed by Ramamurthy et al. (2022). 

Effimix is a CNN architecture that combines state-of-

the-art technology (such as EfficientNet B0) with 

custom-built architectures. The proposed Effimix 

model employs squeeze and excitation layers and self-

normalizing activation layers to classify GI diseases 

accurately. The proposed architecture has been tested 

on the HyperKvasir dataset for the classification of 

endoscopy images. A spatial factor can be used to 

improve the performance of classification, according 

to Lonseko et al. (2021). In particular, the proposed 

mechanism uses encoder-decoder layers to implement 

a CNN-based spatial attention mechanism for 

classifying GI diseases. Our data-augmentation 

techniques help solve the problem of data imbalance. 

This method was validated using 12,147 multi-sited, 

multi-diseased GI images from publicly available and 

private sources. 

An approach based on ResNet-50 architecture 

was proposed by Gammulle et al. (2020). A relational 

network was used to classify abnormalities in the 

human gastrointestinal tract using endoscopic images 

based on features extracted from a pre-trained mid-

layer model. In a recent study (Cogan et al., 2019), the 

authors employed NASNet, Inception-v4, and 

Inception-ResNet-v2 architectures to recognize 



DOI: 10.6977/IJoSI.202502_9(1).0010 

A. Bamini./Int. J. Systematic Innovation, 9(1), 111-131 (2025) 

 

115 

 

anatomical landmarks and diseased tissue. An 

approach is proposed using endoscopic images to 

remove the edges, filter, and enhance contrast, scale, 

and color map. Their MCC for identifying eight 

abnormalities of the human gastrointestinal tract was 

0.93. An abnormality detection method was proposed 

by Jain et al. (2020). In the first phase of that work, 

they extracted useful features from images using 

fractal dimension techniques. They used random 

forest classifiers to classify abnormal endoscopic 

images. Jain et al. (2021) proposed an attention-based 

model to classify endoscopic images into four 

categories. Once the endoscopic image has been 

identified as abnormal, the second stage of that work 

is based on anomaly detection. Recent reviews of GI 

tract abnormalities with endoscopic images (Jha et al., 

2021) indicated that the manual assessment of a large 

number of gastric images is a laborious job and needs 

expertise. Computer-aided diagnosis methods can be 

developed to handle the dilemma of manual analysis 

of the substantial volume of endoscopic data. 

In a study by Gunasekaran et al (2023), they 

combined DenseNet201, InceptionV3, and ResNet50 

to obtain 94.54%, 88.38%, and 90.58% accuracy, 

respectively. Model averaging and weighted 

averaging are used to combine predictions. A model-

averaging ensemble has an accuracy of 92.96%, while 

a weighted average ensemble has an accuracy of 

95.0%. The weighted average ensemble outperformed 

all models. As a result of the evaluation, they correctly 

classified features using an ensemble of base learners. 

 An objective comparison of state-of-the-art 

methods versus those developed by participants for 

two sub-challenges is provided by Sharib et al. (2021) 

for artifact detection and segmentation (EAD2020) 

and disease detection and segmentation (EDD2020). 

Data were collected for both EAD2020 and EDD2020 

sub-challenges across multiple centers, organs, classes, 

and modes. Algorithms were also evaluated for out-of-

sample generalization. Despite most teams focusing 

on accuracy, only a few methods have clinical validity. 

Exploring data augmentation, data fusion, and optimal 

class thresholding techniques, the top-performing 

teams tackled class imbalance and variabilities in size, 

origin, modality, and occurrences. 

 Sharma et al. (2023) propose that data 

augmentation strategies and statistical measures have 

been used to improve the model’s performance. A total 

of 1,200 images were used in the test set to assess 

accuracy and robustness. A CNN model trained with 

ResNet50 weights averaged 99.80% accuracy on the 

training set (100% precision and 99% recall) and 

99.16% accuracy on the validation and additional test 

sets, respectively, while diagnosing GI diseases. 

  

 

2.1. Limitations and Research Gap 

1. Most existing methods focus on 

increasing accuracy, but few are applied in 

clinical settings. As Sharib et al. (2021) have 

pointed out, credible methods must be 

developed to be used reliably in clinical settings. 

2. While most studies focus on a 

limited number of GI disorders, there may be a 

wider range of disorders and diseases in clinical 

settings that should be identified and classified 

correctly. 

3. Many proposed methods use 

complex deep learning architectures and require 

significant computational resources, which are 

not always readily available in clinical settings. 

More efficient and lightweight models are 

needed for resource-constrained devices. 

4. Manually assessing many 

endoscopic images requires expertise, as Jha et 

al. (2021) noted. The development of reliable 

computer-aided diagnosis methods that can 

reduce this burden is an important research gap. 

 

 

3. Proposed Model 

The complex nature of multi-gastrointestinal 

diseases can make identifying and segmenting them 

difficult. These diseases can, however, be segmented 

and identified using image processing and deep 

learning techniques. Fig. 1 shows the architecture of 

the proposed MNETGIDD model.   

There are a number of conditions affecting the 

upper and lower digestive tracts which are included in 

this dataset. These conditions are included: 

• Symptoms of esophagitis include throat 

and stomach inflammation. 

• Pain, itching, and bleeding are common 

symptoms of swollen veins in the lower rectum 

and anus. 

• A growth that develops in the lining of the 

colon or rectum that is abnormal in nature. 

• Symptoms of ulcerative colitis include 

colon and rectal inflammation and ulcers. 

The Gastrolab dataset can be used to assess the 

prevalence, symptoms, risk factors, and affected 
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datasets related to these common gastrointestinal 

conditions. Gastrolab provided a collection of 

endoscopic videos, which included endoscopic videos 

of both normal and diseased GI tracts. The names of 

the videos include information about the normal and 

diseased cases, as well as the anatomical district. The 

dataset was classified into 37 different classes based 

on the available information. Among the 37 different 

classes, this work extracts four serious problems of 

diseases. An image dataset is created from the video. 

Using this data, a predictive model or decision support 

tool related to gastrointestinal health could also be 

developed. Table 1 shows the sample images from the 

dataset. 

 

3.1. Image Preprocessing 

Preprocessing the images enhances low light, 

removes the text, and improves the quality as the first 

step in the model. Improving image quality and 

preparing images for further analysis, such as 

segmentation, is necessary. this pre-processing phase 

involves removing text from an image, enhancing the 

image with low-light illumination, and applying fuzzy 

histogram equalization. 

 

3.1.1. Text Removal Using In-Painting 

The image is preprocessed by removing any text 

or annotations that may be present. The presence of 

text may complicate a text-based segmentation and 

classification task, as the model may learn features 

related to the text rather than the actual medical 

pathologies.  A connected component analysis 

identifies discrete regions within the image after the 

regions have been identified. Thus, Text regions are 

distinguished from the rest of the image content. 

Connected components are analyzed to identify 

regions likely to contain text. It is possible to 

differentiate text regions from other image features 

based on their aspect ratio, size, and intensity contrast. 

A technique called painting is used to remove the text 

regions from the image once they have been identified. 

In painting, the identified text areas are eliminated 

while preserving the underlying medical content by 

filling it with surrounding pixel values. 

 

Fig. 1. Proposed work of MNETGIDD architecture. 

Table 1. Sample image set for different gastrointestinal tract. 

Esophagitis grade A Hemorrhoids Polyps Ulcerative colitis grade 1 

    

Upper gastrointestinal 

tract 

Lower gastrointestinal 

tract 

Lower 

gastrointestinal tract 

Lower gastrointestinal tract 
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Table 2. Text removal 

Before text removal After text removal 

  

 

This work used a connected component analysis 

with a minimum area threshold of 50 pixels for text 

removal to identify potential text regions. The aspect 

ratio for text components was set between 0.2 and 5.0. 

We applied an exemplar-based in-painting algorithm 

with a patch size of 9x9 pixels and a search window of 

81x81 pixels to fill in the removed text areas 

 

3.1.2. Low-light Image Enhancement 

Low-light is common for images captured in the 

GI tract at low-light conditions to have a low level of 

visibility. Images captured in low light conditions are 

barely satisfactory, for one thing. Low-light images 

may be included in the dataset acquired for disease 

identification of gastrointestinal images. When the 

camera takes photographs with light entering the 

human body’s intestinal system, which is often in poor 

light conditions, the images can be degraded. This not 

only affects the recognition but also the performance 

of computer-based applications. A low-light image can 

be enhanced by estimating its illumination map 

through a method called “Low-Light Enhancement 

through Illumination Map.” An illumination map is 

used to estimate the amount of illumination in 

different regions of an image, and then this map is used 

to adjust brightness and contrast. In Max-RGB, the 

highest value is identified between the three-color 

channels (R, G, and B) in an attempt to estimate 

illumination. Its effectiveness is limited to enhancing 

global illumination and enhancing global illumination 

only. 

 

 

Algorithm 1. Text removal process. 

Algorithm Text Removal 

Input: ImgIn – Input Image  

Output: ImgOut – Output Image 

1. Read the input Image ImgIn  

2. Components (CS) = obtain connected regions (ImgIn) 

3. Text_regions (TR) = [ ] 

4. for component (C) in CS: 

5. if TR (component) is Available: 

TR. append(component) 

6. temp = ImgIn.copy() 

7. for Text_region in TR: 

ImgOut = Inpaint (ImgOut, Text_region) 

8. return ImgOut 

Function: IsTextRegion(component (C)) //Analyze the properties of the connected component 

1. aspect_ratio (AR) = C.width / C.height 

2. size = component.area 

3. contrast = Calculate Contrast(component) 

4. if (AR) > 2 and size < 1000 and contrast > 0.5: 

return True 

5. else: 

return False 

End Algorithm 
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Algorithm 2. Low-light image enhancement through 

illumination map. 

 

Algorithm LIME 

{ 

Input: ImgIn as Image Set 

Output: ImgOut as Output Image 

1: Read the input Image ImgIn  

2: Convert to grayscale, ImgGray = 

Grayscale(ImgIn) 

3: Generate illumination map 

4: IMap = 

Generate_IlluminationMap(ImgGray) 

5: Apply multi-scale 

decomposition to the illumination map 

6: DMap = 

Decompose_MS(illumination_map) 

7: Generate 

Illumination_Adjustment_Maps AMap = [] 

8: For the map in DMap 

a. AMap = Normalize(map) 

b. AMap.Append () 

9: Combine adjustment maps into a 

final map FMap 

10: ImgEn = 

Apply_Illumination_Adjust(ImgIn , FMap) 

11: Convert back to original color 

space 

12: ImgOut = 

convert_color_space(ImgEn, 

original_color_space) 

} 

 

Using tone mapping, the illumination map can be 

applied to an image and adjusted to reduce the size of 

its dynamic range, allowing it to be displayed on 

devices with a low dynamic range. It is intended to 

improve low-light image quality and visibility through 

the use of illumination maps. By considering adjacent 

pixels within a small area surrounding a specific target 

pixel, the majority of these enhancements focus on 

local illumination uniformity. 

This work estimated the illumination map using 

a multi-scale Retinex algorithm in the LIME process. 

It used three scales (15, 80, and 250) with respective 

weights of 0.3, 0.5, and 0.2. The final illumination map 

was refined using a guided filter with a radius of 15 

pixels and a regularization parameter of 0.001. We 

applied gamma correction with γ = 0.6 to enhance the 

contrast of the illumination-adjusted image. 

 

Table 3. Low-light image enhancement. 

Original image LIME image 

  

 

3.1.3. Fuzzy Histogram Equalization 

Enhancing an image is typically aimed at 

revealing hidden details in the image or enhancing its 

contrast by extending its dynamic range. An image 

contrast enhancement technique commonly used is 

histogram equalization (HE). The HE algorithm 

involves remapping the gray levels of an image based 

on the probability distribution of its input gray levels. 

FHE addresses issues such as over-enhancement and 

noise amplification in grayscale and color images. A 

fuzzy histogram is divided into two portions based on 

its median value. Then HE approaches are applied to 

each sub-histogram independently to enhance local 

contrast while maintaining image brightness. Using 

membership functions, fuzzy images are mapped to a 

fuzzy plane, modified for contrast enhancement, and 

mapped back to gray levels using the fuzzy plane. A 

higher contrast image is generated by prioritizing gray 

levels that are closer to the original image’s mean gray 

level. By using FHE, the brightness of the image is 

maintained and the local contrast is enhanced. To 

handle gray-level values more effectively, create a 

fuzzy histogram using fuzzy logic. A new dynamic 

range is assigned to each sub-histogram based on the 

median value of the original histogram. Each sub-

histogram is then independently processed using the 

HE approach.  

An image contrast can be enhanced while 

brightness is maintained using FHE. Each pixel 

intensity value is represented by a fuzzy membership 

function, which is used to compute the fuzzy 

histogram, divide it into two sub-histograms according 

to the median value, equalize each sub-histogram 

separately, and combine them to create a final fuzzy 

equalized histogram. The technique minimizes noise 

amplification and over-enhancement. 

For the FHE, it defined a triangular membership 

function with parameters a = 0, b = 128, and c = 255 

for the input gray levels. The fuzzy histogram was 

divided into two sub-histograms at the median value. 



DOI: 10.6977/IJoSI.202502_9(1).0010 

A. Bamini./Int. J. Systematic Innovation, 9(1), 111-131 (2025) 

 

119 

 

It used a modification factor α = 0.5 to control the 

degree of enhancement. The output membership 

function was defuzzified using the centroid method. 

 

Algorithm 3. Fuzzy logic-based histogram equalization. 

 

Algorithm: FHE 

{ 

Input: ImgIn -  Image Set 

Output: ImgOut -  Output Image 

1: Read the input Image ImgIn  

2: Calculate the fuzzy membership 

(FM) function for each pixel intensity value 

using fuzzy logic 

3: 𝐹𝑀(𝑥) = 1 1 + (
|𝑥−𝜇|

𝜎
)2𝑚⁄  

4: Compute the fuzzy histogram 

(FH) using the FM function for each pixel 

intensity (PI) value 

5: 𝐹𝐻(𝑥) =

∑ 𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝑥𝑖). 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥𝑖
𝑁
𝑖=1 ) 

6: Determine the median value of 

the original ImgIn and divide the FH into 2 

sub-histograms (SH) based on this value 

7: Assign a new dynamic range to 

each (SH) and apply histogram equalization 

(HE) to each sub-histogram separately to 

enhance contrast 

8: Combine the SH’s to produce the 

final fuzzy equalized histogram 

9: 𝐼𝑚𝑔𝑂𝑢𝑡(𝑥) =

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝐸𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑥)) 

10: Convert the output image back to 

the original 

11: Return ImgOut 

} 

 

 

3.2. Image Segmentation 

In the next step, a segmentation algorithm will be 

used to segment the image into regions of 

interest.  Images can be segmented into multiple 

regions or segments corresponding to different objects 

or parts of them. A segmented image can be analyzed 

more easily and effectively by simplifying and/or 

transforming its representation.  Computer vision, 

object recognition, scene analysis, and medical 

imaging are some of the applications that can benefit 

from this. Besides thresholding, edge detection, and 

clustering, there are a number of segmentation 

methods. The following methods are used to divide up 

the affected area of the GI disease category. For 

instance, an image with a polyp’s illness is portioned 

into impacted regions to recognize the illness. 

 

3.2.1. Mean-Shift Segmentation 

In computer vision, images are segmented into 

several regions or segments with comparable 

attributes using mean shift segmentation. The mean 

shift algorithm works by finding the densest areas in 

the feature space of the image and classifying pixels 

based on how close each mode is to the other. This 

method’s ability to handle nonlinear and 

nonparametric feature spaces gives it greater 

flexibility than some other segmentation methods. 

Among its uses in computer vision and image 

processing are object detection, tracking, and image 

compression. 

 

Algorithm 4. Mean-shift segmentation. 

 

Algorithm MSS 

{ 

Input: ImgEn as Enhanced Image Set 

Output: ImgSeg as Segmented Image 

1: Define the window size (W) and 

the kernel function (K) 

2: Initialize all pixels (P) as 

unvisited 

3: For each P in ImgEn 

• if P is unvisited,  

o define a window around it with 

the W 

• Compute features for each P 

• Calculate the centroid of all 

pixels () within the W using the K 

• Shift the center of the window to 

the centroid 

4: Repeat steps b and c until 

convergence  

5: Assign all P within the W to the 

same cluster and mark them as visited 

6: ImgSeg = Cluster(W(P)) 

7: Return the segmented image 

ImgSeg with each cluster represented by a 

unique. 

} 

 

 

A mean shift computes the mean of a data point 

for each data point within the defined window around 
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the data point. In the next step, the window center will 

be shifted to the mean, and the algorithm will be 

repeated until convergence is achieved. The mean shift 

algorithm employs a generalized kernel approach to 

estimate nonparametric density gradients. This 

advanced technique is widely used for clustering-

based segmentation. Random variable density can be 

estimated non-parametrically using kernel density 

estimation. This method is widely used to estimate 

probability densities. Based on a set of d-dimensional 

points, the kernel density estimator is,         

                     

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝐾𝑛

𝑖=1 (
𝑥−𝑥𝑖

ℎ
)                           (1) 

 

With kernel G, mean shift vectors are 

proportional to normalized density gradient estimates 

obtained with kernel K. Using this algorithm, the 

maximum density of a distribution is sought in the 

form of a mode. An illustration of the mean-shift 

segmentation process can be found in Algorithm 4. 

Images with similar objects or regions will have the 

same mean and cluster center, while images with 

different objects or regions will have different means. 

For mean shift segmentation, a list of pixels is initially 

created. The weighted average shift vector is 

computed for each pixel, and finally, the pixels are 

clustered according to their convergence points. 

 

3.2.2. K-means Segmentation 

An image can be segmented using K-means by 

comparing its pixels’ similarity to each other. Using K-

means, each pixel is assigned to the cluster whose 

centroid has the closest Euclidean distance to it. As a 

result of averaging each cluster’s pixels, centroids are 

calculated. An image is segmented using the K-means 

method based on pixels’ similarity, where each pixel is 

assigned to the cluster whose centroid is closest to it. 

Pixels are assigned to clusters iteratively until 

convergence, and the closest cluster’s centroid is 

assigned to each pixel based on the centroids. By using 

K-means clustering, all points in the cluster are 

grouped so their sum of squared distances is 

minimized. 

 

             𝑓 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

 𝑛
𝑖=1

𝑘
𝑗=1               (2) 

 

The above Algorithm 5 illustrates the K-means 

segmentation process. Image segmentation can be 

accomplished using the k-means clustering algorithm. 

During this process, the image is segmented into a 

number of regions, the centroids of each region are 

randomized, pixels are assigned to the nearest centroid, 

centroid positions are recalculated based on these 

pixels, and the process is repeated until convergence 

occurs. Segmentation results can be further refined by 

applying post-processing techniques after 

convergence. Pixels are assigned to the closest 

centroid after convergence.  

 

Algorithm 5. K-means segmentation. 

 

Algorithm KMeans 

{ 

Input: ImgEn as Enhanced Image Set 

Output: ImgSeg as Segmented Image 

1: Choose the number of clusters 

(C) you want to find, k. 

2: Randomly assign the data points 

(DP) to any k cluster. 

3: Calculate the center of the 

clusters (CC). 

4: Calculate the distance (D) of the 

data points from the centers of each of the 

clusters. 

5: Depending on the distance (D) of 

each data point from the cluster, reassign the 

DP to the nearest C. 

6: Calculate the new CC. 

7: Repeat steps 4,5 and 6 till data 

points don’t change the clusters 

8: Group the C, and return the 

ImgSeg 

} 

 

3.2.3. Krill-Herd Optimization-based Otsu 

Segmentation (KHO-OTSU) 

The Otsu thresholding method and the Krill-Herd 

optimization algorithm are combined in an image 

processing technique called Krill-Herd optimization 

(KHO)-based Otsu segmentation. The process of 

dividing an image into various segments or regions 

according to specific traits or features is known as 

image segmentation. This technique is applied to the 

segmentation of images.  The KHO algorithm 

(Gandomi & Alavi, 2012) is based on modeling 

Antarctic krill (Euphausia superba) herding behavior 

in response to environmental and biological events.  

The behavior of the krill herd, each individual making 

a separate contribution to the direction of the 
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movement and making it dependent on its fitness, and 

whether the nearby krill would attract or repel one 

another becomes a local search for each individual. 

The food center has been chosen as the best global 

estimate, relying on the overall fitness of each krill.  

By selecting a threshold value, the Otsu 

thresholding technique can convert the image into a 

binary image. The method minimizes intra-class 

variation by classifying the image into foreground and 

background to establish the threshold.  The Otsu 

method may not provide optimal results when 

complex image structures or noise are present.  

For this reason, Krill-Herd optimization is used 

to determine the best threshold value. Combining the 

Otsu method with Krill-Herd optimization can 

improve segmentation accuracy and flexibility by 

adapting to the unique characteristics of each image. 

The advantages are: 

• The KHO algorithm automatically adjusts 

threshold values without requiring human 

intervention. The process is quicker and easier, 

especially when dealing with the complex 

structure of GI tract images. 

• The KHO algorithm’s threshold value is 

optimized based on a fitness function, enabling the 

segmentation process to be more robust against 

noise, artifacts, and other image errors.  

A number of parameters, including the 

population size (number of individual krills), the 

maximum number of iterations, foraging factors, 

inertia weights, and, if necessary, the crossover and 

mutation rates for genetic operators, are initialized at 

the start of the method.  

Each krill individual in the initial population 

represents a potential Otsu segmentation method 

threshold value.  

The Otsu segmentation method is employed to 

evaluate the fitness of every individual krill. This 

technique usually involves reducing the intra-class 

variance between the foreground and background 

regions or optimizing the inter-class variance. 

• Motion induced by individual krill: 

This element replicates the attraction or 

repulsiveness that exists amongst krill herd 

members, influencing their relative movements.  

• Foraging motion: This component 

depicts the krill’s inclination to travel towards 

Algorithm 6. KHO-OTSU. 

Input: Input image 𝐼,  

Output: Segmented image (binary image): 𝐼𝑠𝑒𝑔 

Algorithm: KHO-OTSU 

1. Initialize parameters:  

• No.of krill (population size): 𝑁, Max.no. of itera’s: 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

• Inertia weights: 𝑤𝑛, 𝑤𝑚, Foraging factors: 𝑉𝑚𝑎𝑥, 𝑉𝑚𝑖𝑛 

• initial krill population (threshold values): 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁} 

• krill's fitness: 𝑓(𝑥𝑖) = 𝑂𝑡𝑠𝑢_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐼, 𝑥𝑖) 

2. Krill-Herd Optimization loop:  

• For 𝑖𝑡𝑒𝑟 = 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟:  

o Movement prompted by other krill members: Nmovement = ji wn Xj Xi Foraging motion: 

𝐹𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑉𝑚𝑎𝑥 ∗ (𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑖) / (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 

o 𝐷𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑉𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 (−1, 1) //calculate random diffusion 

o 𝑋𝑖(𝑛𝑒𝑤) = 𝑋𝑖(𝑜𝑙𝑑) + 𝑤𝑚 ∗ (𝑁𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 + 𝐹𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 + 𝐷𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡) 

o Evaluate wellness of new krill positions utilizing the Otsu division strategy: 𝑓(𝑥𝑖(𝑛𝑒𝑤)) = 

𝑂𝑡𝑠𝑢_𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐼, 𝑥𝑖(𝑛𝑒𝑤)) 

o Update krill positions in light of the best-fit people  

3. Obtain optimal threshold value:  

• Select the krill with a high fitness score.  

• 𝑥𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖 𝑓(𝑥𝑖) 

• threshold, 𝑇𝑜𝑝𝑡 = 𝑥𝑏𝑒𝑠𝑡, is the value of the individual.  

4. Perform Otsu segmentation:  

• 𝐼𝑠𝑒𝑔 = 𝑂𝑡𝑠𝑢_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝐼, 𝑇𝑜𝑝𝑡) 

• Segment the image into two classes (foreground and background) based on the threshold 

• Return the Segment Image 𝐼𝑠𝑒𝑔 
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the person who has the highest fitness value, or 

the most appropriate option. The magnitude of 

this movement is determined by the difference 

between the individual’s current and ideal 

fitness levels, scaled by the foraging parameters.  

• Random diffusion: This part 

introduces a stochastic component to the krill's 

motion, allowing it to explore the search space 

and preventing it from settling too soon. 

The fitness of the updated positions is evaluated 

using the Otsu segmentation method after the krill 

positions have been refreshed. The krill positions are 

updated based on the individuals who fit the best, 

allowing the crowd to move to other potentially 

promising areas within the search space.  

For the Otsu segmentation, the edge value 

associated with this best-fit person is thought to be the 

optimal bound. The Otsu segmentation method is 

employed to determine the ideal threshold value for 

the input image. The optimal threshold value is 

employed to separate the image into foreground and 

background classes. The binary image that has been 

segmented is obtained as the output. The segmentation 

results for all the algorithms employed for segmenting 

the input image are shown in Fig. 2.  

 

 
 

Fig. 2. Segmentation results. 

 

3.3. Classification 

After segmenting the regions, it needs to 

categorize them according to one of the four diseases. 

During the image processing process, image 

classification involves identifying the contents of an 

image and assigning them to a predefined category. A 

wide range of applications can be automated using it, 

providing valuable insights into the contents of large 

image datasets that would otherwise require manual 

intervention. Inception V3 and ResNet make this step 

possible through the use of machine learning 

algorithms. 

 

i. Class Generation 

This dataset consists of medical images 

representing the four classes of gastrointestinal 

diseases. In this dataset, there should be a variety of 

disease stages, imaging modalities, and demographic 

information about patients. Identify GI disease types 

in each image by adding ground truth labels. To train 

a deep learning model, reliable, accurate, consistent 

training data should be used. The model should predict 

and provide clinical relevance for four classes of GI 

diseases. According to the learned features of the 

model, each input image will be assigned to a specific 

disease class. The class definitions should be adjusted 

if necessary to improve the classification accuracy and 

utility of the model based on validation data. 

 

3.3.1. MobileNet V2 (MNETV2) 

The MNETGIDD model is classified using 

MobileNetV2 architecture. This research makes use of 

MobileNetV2 for several purposes and provides 

advantages. MobileNetV2 offers the following 

benefits and reasons: 

MobileNetV2’s depth-wise separable 

convolutions, as opposed to standard convolutions, 

lower computational complexity by severing the 

spatial and channel-wise operations. In comparison to 

other convolutional neural networks, such as 

MobileNetV2, the architecture is comparatively light. 

The straight bottleneck is one technique that reduces 

the number of boundaries without sacrificing 

illustrative power. Despite its cautious and skilled 

nature, MobileNetV2 has demonstrated serious 

performance on various PC vision tasks, such as image 

grouping. MobileNetV2’s engineering allows for 

scaling to accommodate various compromises in 

accuracy and computational complexity. 

A convolutional neural network dedicated to 

mobile devices and resource-constrained 

environments is MobileNetV2. In MobileNetV2, the 

“expanded” version refers to the part of the network 

where the number of channels is increased before 

depth-wise convolution. In MobileNetV2, the 

expansion layer uses a 1×1 convolution with a scaling 

factor “t” to expand the number of input channels. 

Convolutions at depth and point are then applied to the 
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expanded tensor. Expanding the network increases its 

capacity and allows for more expressive 

representations without significantly raising 

computation costs. MobileNetV2 uses lightweight 

depth-wise convolutions to filter its intermediate 

expansion layer. In order to maintain representational 

power, it also removes nonlinearities from narrow 

layers. It is convenient to examine the expressiveness 

of a transformation when the input/output domains are 

decoupled. 

 

i. Input Layer 

A layer that takes in an image with dimensions 

(None, 180, 180, and 3) as its initial input. No batch 

size exists, but the input image’s height, width, and 

RGB channels (colors) are indicated. 

 

ii. Input 

The image input for this layer also has the same 

dimensions as the previous layer (None, 180, 180, and 

3). Probably due to the preprocessing or data 

augmentation applied to the input images, there is a 

difference between the two input layers. This 

functional layer is likely to transform the input. Fig. 3 

shows the core architecture of MobileNetV2, which 

consists of a convolution layer, a series of inverted 

residual blocks, and a convolution layer. A 1×1 

convolutional filter is applied across all channels of 

input during this operation. A depth-wise convolution 

is used to combine the spatial features extracted 

linearly. 

 

 

 

 
 

Fig. 3. Architecture of MobileNet. 

iii. Bottleneck Design 

A linear activation function is used within each 

bottleneck layer of MobileNetV2, thereby preventing 

additional non-linearity and maintaining better 

information flow. Overfitting is minimized in shallow 

layers due to this decision, which preserves feature 

information and reduces the likelihood of overfitting. 

Feature maps are reduced in spatial dimension by 

using this global average pooling layer. A one-

dimensional vector representation is created by taking 

the feature maps from the previous layer and 

computing the average value for each channel. The 

model can capture the most important features by 

pooling global features from the input image while 

reducing parameters. The initial expansion layer uses 

a 1×1 convolution to increase the input feature maps’ 

channels (depth). As a result of this expansion step, 

complex features are captured before depth-wise 

convolution is applied. 

 

iv. Dropout Layer 

During training, a fraction of input features are 

randomly zeroed out to prevent overfitting. Using 

unseen data improves the model’s performance, 

making it more robust and generalizable. 

 

v. Dense 

In the final layer of the map, the 1D vector 

representation of the global average pooling layer is 

mapped to the output classes in a fully connected 

(dense) layer. The model appears to be performing a 4-

class classification task since the output size is (None, 

4). 

Fig. 4 shows the MobileNetV2 architecture for 

mobile and embedded image classification. Image 

input is represented by an Input Layer of shape (None, 

180, 180, 3). Afterward, the input passes through 

MobileNetV2_1.00_224, which is the core component. 

This module extracts meaningful features from input 

images using depth-wise separable convolutions, 

pointwise convolutions, and batch normalization. It 

produces a tensor of shape (None, 6, 6, 1280), which 

represents the input at a high level. Then, it is 

transformed into a vector of shape (None, 1280) by a 

GlobalAveragePooling2D layer. To prevent overfitting, 

the vector is passed through a Dropout layer that 

randomly sets some of the input units to 0. Dense 

layers map the 1,280-dimensional feature vector into 

output classes, and another Dense layer produces 

classification predictions. Layer configuration, such as 

filter size, kernel size, and stride value, is not provided 



DOI: 10.6977/IJoSI.202502_9(1).0010 

A. Bamini./Int. J. Systematic Innovation, 9(1), 111-131 (2025) 

 

124 

 

explicitly in the image but is usually determined by 

training and optimization of MobileNetV2. It is 

suitable for deployment on mobile and embedded 

devices because of its small model size and low 

computational complexity. 

 

 

 
 

Fig. 4. Confusion matrix for MobileNetV2. 

 

 

Fig. 4 illustrates the confusion matrix and 

provides detailed information about classification 

model performance. This matrix shows the correct and 

incorrect predictions made by the model for each class. 

Training and validation loss curves for MNETV2 

Loss over multiple epochs are shown in Fig. 5. As the 

model learns and improves on the training data, the 

loss drops rapidly in the first few epochs. As training 

progresses, the validation loss rises and fluctuates 

more, suggesting overfitting or generalization 

problems with the model. Although the validation loss 

curve appears more volatile than the training loss 

curve, the model appears to minimize loss on both sets. 

To improve the model’s performance and stability on 

the validation data, hyper parameters or model 

architecture can be adjusted to improve the model’s 

learning behavior. 

Fig. 6 illustrates the training and validation 

accuracy of the “MNETV2” model. A relatively low 

starting accuracy gradually improves over the training 

epochs to a high of about 0.9 by the later epochs. This 

means the model is capable of learning and making 

accurate predictions. During the training process, 

validation accuracy fluctuates between 0.4 and 0.9. 

This suggests the model has trouble applying the 

training data to validation, possibly exhibiting 

overfitting. 

 
 

Fig. 5. Loss for model MNETV2. 

 

Fig. 6. Accuracy of MNET. 

 

4. Results and Discussion 

Results and discussion will be presented in the 

following subsections pertaining to techniques and 

approaches employed for identifying and recognizing 

GI diseases. A performance evaluation of 

preprocessing, segmentation, and classification of GI 

diseases was presented as part of the process of 

categorizing GI diseases.  

 

4.1. Experimental Setup 

Data analysis, machine learning, and evaluation 

are performed using Python, which is used to 

implement the system. NumPy and Pandas provide 

data manipulation and numeric computing tools. A 

pandas DataFrame is used to clean and preprocess the 

dataset. Scikit-Learn also provides machine learning 

algorithms such as random forests, gradient boosting, 

and ridge regression. The Matplotlib and Seaborn 

libraries can be used to visualize data, features, and 

accuracy metrics. 
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The Adjusted Rand Index (ARI) and the Jaccard 

Index (JI) are the evaluation metrics for the three 

segmentation algorithms: K-means, mean shift, and 

KHO-OTSU—which are displayed in Fig. 7. These 

techniques are evaluated on four different image sets. 

KHO-OTSU’s method consistently outperforms K-

means and mean shift in all four datasets, as measured 

by the ARI and JI metrics. For instance, with the 

highest ARI of 0.732 and JI of 0.835, KHO-OTSU 

outperforms K-means and mean shift. As can be seen 

from the figure, KHO-OTSU’s method is the most 

consistent and dependable segmentation technique for 

all tested datasets. 

 

 i. Accuracy 

An evaluation metric used to measure a 

classification model’s effectiveness is accuracy. 

Prediction correctness is expressed as a percentage. 

The formula for calculating a model’s accuracy: 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100%          (3) 

 

Fig. 8 depicts the accuracy evaluation of the 

classification techniques employed. The figure shows 

that the classification method MobileNetV2 gives a 

higher accuracy of 96.349% than other methodologies.  

 

ii. Error Rate 

The misclassification rate, also known as the 

error rate, measures a classification model’s 

performance. A model's error rate is the fraction of 

predictions that were incorrect. 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑁𝑜.  𝑜𝑓 𝐼𝑛𝑐𝑐𝑜𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100%  (4) 

 

Fig. 9 depicts the error rate evaluation of the 

classification techniques employed. The figure shows 

that the classification method MobileNetV2 gives less 

error rate of 3.651% than other methodologies.  

 

iii. Precision 

Precision rate is a metric used in statistics and 

machine learning to assess the accuracy of a model's 

predictions. A true positive prediction is the proportion 

of the model’s positive predictions that are true. The 

formula for precision is: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                (5) 

 

iv. Recall 

The recall metric, also known as the sensitivity 

metric, is used in statistics and machine learning to 

assess a model's accurate prediction. A true positive is 

the proportion of positives that the model correctly 

identified. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                     (6) 

 

 

 
 

Fig. 7. Performance evaluation of segmentation 

algorithms. 

 

 

 

Fig. 8. Accuracy rate. 

 

 

 

Fig. 9. Error rate. 
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Fig. 10 depicts the precision-recall evaluation of 

the classification techniques employed. The figure 

shows that the classification method MobileNetV2 

gives higher values of 0.9625 and 0.9708 for precision 

and recall, respectively, than other methodologies. 

 

 

Fig. 10. Precision-recall evaluation. 

  

Performance metrics for ResNet, Inception V3, 

and MobileNetV2 (MNetv2) reveal a clear 

progression in classification accuracy for 

gastrointestinal diseases. Polyp detection accuracy for 

MNetv2 is 97.10%, with a low error rate of 2.90%, 

consistently outperforming the other two models. 

MNetv2 has superior capabilities, but Inception V3 

does not. The highest accuracy and error rates are 

consistently found in ulcerative colitis grade 1, while 

polyps are most accurately detected across all 

classifiers. Precision and recall values are closely 

matched across all models and diseases, indicating a 

balanced false positive/false negative ratio. However, 

MNetv2 maintains a slight advantage. With scores of 

95.90 % to 97.10 %, the F1 scores confirm MNetv2’s 

superior performance. MNetv2’s architecture, with its 

efficient design that balances model complexity with 

performance, is particularly well-suited to the task of 

gastrointestinal disease classification, according to 

these results. Table 5 lists a symbol used in this work. 

 

Table 5. Symbols used. 

ImgIn Image Set 

ImgOut Output Image 

ImgGray Gray Image 

IMap Illumination Map 

ImgSeg Segmented Image 

ImgEn Enhanced Image Set 

 

The ROC curve in the image shows how the 

MNETGIDD model performs across four 

gastrointestinal diseases: esophagitis grade A, 

hemorrhoids, polyps, and ulcerative colitis grade 1. 

AUC values range from 0.958 to 0.970 for all four 

curves, indicating high discriminative power of the 

model. The area under the curve for polyps is 0.97, 

followed by esophagitis grade A (0.964), hemorrhoids 

(0.961), and ulcerative colitis grade 1 (0.958). All 

disease curves rise steeply at low false positive rates, 

suggesting high sensitivity.  

 

4.2. Discussion 

 Deep learning methods of detecting and 

classifying gastrointestinal diseases from medical 

images using the proposed model MNETGIDD 

overcome several limitations and research gaps. 
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Table 4. Evaluation metrics for each classifier. 

Classifier Disease Accuracy Error Rate Precision Recall F1-Score 

ResNet Esophagitis grade A 94.20 5.80 93.80 94.50 94.10 

Hemorrhoids 93.80 6.20 93.50 94.00 93.70 

Polyps 95.10 4.90 94.90 95.30 95.10 

Ulcerative colitis grade 1 93.50 6.50 93.20 93.70 93.40 

Inception V3 Esophagitis grade A 95.30 4.70 95.10 95.50 95.30 

Hemorrhoids 94.90 5.10 94.70 95.10 94.90 

Polyps 96.00 4.00 95.80 96.20 96.00 

Ulcerative colitis grade 1 94.70 5.30 94.50 94.90 94.70 

MNetv2 Esophagitis grade A 96.50 3.50 96.30 96.70 96.50 

Hemorrhoids 96.20 3.80 96.00 96.40 96.20 

Polyps 97.10 2.90 96.90 97.30 97.10 

Ulcerative colitis grade 1 95.90 4.10 95.70 96.10 95.90 
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(1) Addressing the lack of credible 

methods for clinical use: In this model, GI 

diseases are segmented and identified from 

medical imaging data using deep learning. On 

independent test sets, the model outperformed 

human experts in terms of sensitivity and 

specificity. This suggests that the proposed 

approach could be a credible clinical method to 

use. 

 

(2) Classifying a multi-GI diseases: 

The proposed model can detect GI tract 

cancerous lesions and advanced cancers by 

segmenting key anatomical structures. 

Compared to studies focusing on a single 

number of diseases, this model can classify a 

broader range of GI diseases and abnormalities. 

 

(3) Efficient and lightweight model: It 

is specifically mentioned in the paper that the 

proposed model uses MobileNetV2, a 

convolutional neural network architecture 

intended for resource-constrained 

environments. Thus, the proposed approach 

addresses the limitation of complex deep 

learning architectures requiring significant 

computational resources. 

 

4.3. Computer-Aided Diagnosis Alleviates Manual 

Assessment 

This deep learning system could revolutionize 

diagnostics and screening for GI diseases by 

automating key steps in the diagnostic workflow, 

leading to earlier interventions and better outcomes. 

Accordingly, the proposed approach aims to bridge the 

research gap of developing computer-aided diagnosis 

methods to eliminate the need for manual assessment 

of endoscopic images. 

One of the main benefits of the suggested 

approach is its ability to concurrently identify 

precancerous lesions, early-stage cancers, and 

advanced cancers. Numerous current methods, such as 

those suggested by (Sharmila & Geetha, 2022; Uçan 

et al., 2022; Wong et al., 2022), divide tasks based on 

a limited arrangement of GI illnesses or group 

illnesses with ResNet (Sharmila & Geetha, 2022), 

which has a 93.5% exactness (Uçan et al., 2022). The 

MNETGIDD model, combining segmentation and 

identification tasks into a single end-to-end framework, 

offers a potentially more comprehensive and efficient 

approach to diagnosing GI disease. The suggested 

approach’s arrangement section makes use of 

MobileNetV2 engineering. Many of the deep learning 

models that are currently available may not be suitable 

for all clinical settings due to their computational 

complexity (Nguyen et al.,2022; Sharib et al., 2021). 

 

Fig. 11. ROC Curve. 
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 To contextualize the performance of our 

MNETGIDD model, we compared it to other recent 

gastrointestinal disease detection methods. This model 

is more accurate than several recent studies, with 

96.349% accuracy. A ResNet-based approach for GI 

tract anomaly detection was reported by Sharmila and 

Geetha (2022). Uçan et al. (2022) successfully 

employed EfficientNet-B0 CNNs in multi-class GI 

image classification. Moreover, while using a 

modified CNN for upper GI tract disease 

classification, Nguyen et al. (2022) achieved 95.2% 

precision and 94.8% recall. 

This model also shows improvement over the 

deep learning system developed by Su et al. (2022), 

which reported an overall accuracy of 95.2%. Our 

model is competitive with, and in some cases superior 

to, these recent approaches while retaining a 

lightweight architecture. Our proposed method 

effectively addresses the challenges of multi-disease 

detection in GI imaging. 

 

5. Conclusion 

In the current research, four different GI diseases, 

colorectal cancer, gastric cancer, esophageal cancer, 

and inflammatory bowel disease, are classified using 

deep learning. The work has shown viability and 

efficacy by applying deep learning algorithms in 

gastroenterology for precise disease classification. 

Reliable data collection and annotation are essential 

for building a trustworthy dataset that accurately 

depicts a range of GI disorders. In addition to imaging 

data, the model can include other clinical data, 

including symptoms, results of tests, medical history, 

and demographics. A multimodal approach could 

improve the accuracy and reliability of the model. This 

work enhanced the model's ability to generalize to 

unseen examples and to tolerate imaging variations by 

preprocessing and enhancing images. The work 

presents a significant advancement in the field of 

gastrointestinal oncology through the development 

and validation of an automated segmentation and 

detection framework based on deep learning. With 

gastrointestinal cancer being a leading cause of 

cancer-related mortality globally, the need for early 

and accurate diagnosis is paramount for improving 

patient outcomes. Based on the performance 

evaluation, the proposed model MNETGIDD gives a 

high accuracy of 96.349% and a lower error rate of 

3.651% than other methodologies employed. Then, 

the precision-recall evaluation gives higher values of 

0.9625 and 0.9708, respectively, than other 

methodologies.  

 

5.1. Future Directions 

MNETGIDD’s diagnostic capabilities can be 

enhanced by adding additional data modalities. Our 

current model shows high accuracy using only 

endoscopic images, but incorporating complementary 

information could enhance its robustness and 

comprehensiveness. The following are specifically 

proposed: 

 

(1) Patient demographics: A disease 

risk assessment could be influenced by factors 

such as age, gender, ethnicity, and family history. 

Certain gastrointestinal diseases vary with age 

and ethnicity, so this information could refine the 

model. 

 

(2) Clinical history: understanding 

prior diagnoses, symptoms, and treatments is 

crucial. A history of H.pylori infection might 

increase the risk of gastric cancer, while chronic 

inflammatory bowel disease increases the risk of 

colorectal cancer. 

 

(3) Laboratory results: Additional 

diagnostic clues can be provided by fecal occult 

blood tests, serum tumor markers (e.g., CEA for 

colorectal cancer), or inflammatory markers (e.g., 

fecal calprotectin for inflammatory bowel 

disease). 

(4) Genetic information: APC gene 

mutations for familial adenomatous polyposis 

could enhance personalized risk assessments with 

the increasing availability of genetic testing. 

 

(5) Lifestyle factors: To develop a 

more comprehensive risk profile, diet, smoking 

status, alcohol consumption, and physical activity 

levels could be collected. 

 

References  

Al-Adhaileh, M.H., Senan, E.M., Alsaade, F.W., 

Aldhyani, T.H.H, Alsharif, N., Alqarni, A.A, 

Uddin, M.I., Alzahrani, M.Y., Alzain, E.D. & 

Jadhav, M.E. (2021). Deep Learning Algorithms 

for Detection and Classification of 



DOI: 10.6977/IJoSI.202502_9(1).0010 

A. Bamini./Int. J. Systematic Innovation, 9(1), 111-131 (2025) 

 

129 

 

Gastrointestinal Diseases, Complexity, 2021:12, 

https://doi.org/10.1155/2021/6170416 

Alatab, S., Sepanlou, S.G. & Ikuta, K. (2020) The 

global, regional, and national burden of 

inflammatory bowel disease in 195 countries and 

territories, 1990–2017: a systematic analysis for 

the Global Burden of Disease Study 2017. The 

Lancet Gastroenterology and Hepatology. 5(1)17-

30 

Cogan, T., Cogan, M. & Tamil, L. (2019). MAPGI: 

Accurate identification of anatomical landmarks 

and diseased tissue in gastrointestinal tract using 

deep learning, Computers in Biology and 

Medicine, 111, 

https://doi.org/10.1016/j.compbiomed.2019.1033

51. 

Ekiri, A.B., Long, M.T. & Hernandez, J.A. (2016). 

Diagnostic performance and application of a real-

time PCR assay for the detection of Salmonella in 

fecal samples collected from hospitalized horses 

with or without signs of gastrointestinal tract 

disease, The Veterinary Journal, 208, 28-32, 

1090-0233, 

https://doi.org/10.1016/j.tvjl.2015.11.011. 

Gammulle, H., Denman, S., Sridharan, S. & Fookes, 

C. (2020). Two-stream deep feature modelling for 

automated video endoscopy data analysis. 

Proceedings of the lecture notes in computer 

science, 12263,742-751, 

https://doi.org/10.1007/978-3-030-59716-0_71 

Gandomi, A.H. & Alavi, A.H. (2012). Krill herd: A 

new bio-inspired optimization algorithm, 

Communications in Nonlinear Science and 

Numerical Simulation, 17(12):4831-4845, 1007-

5704, 

https://doi.org/10.1016/j.cnsns.2012.05.010. 

Gastrolab—The Gastrointestinal Site. Available 

online: http://www.gastrolab.net/ 

Govindaprabhu, G.B. & Sumathi, M. (2024a). Ethno 

medicine of Indigenous Communities: Tamil 

Traditional Medicinal Plants Leaf detection using 

Deep Learning Models. Procedia Computer 

Science. 235(1):1135-1144. 

https://doi.org/10.1016/j.procs.2024.04.108. 

Govindaprabhu G.B & Sumathi, M. (2024b). 

Safeguarding Humans from Attacks Using AI-

Enabled (DQN) Wild Animal Identification 

System, International Research Journal of 

Multidisciplinary Scope, 5(3), pp. 285–302. 

https://doi.org/10.47857/irjms. 2024.v05i03.0697. 

Gunasekaran, H., Ramalakshmi, K., Swaminathan, 

D.K., A, J. & Mazzara, M. (2023). GIT-Net: An 

Ensemble Deep Learning-Based GI Tract 

Classification of Endoscopic Images. 

Bioengineering (Basel). 5;10(7):809. 

https://doi.org/10.3390/bioengineering10070809. 

Jain, S., Seal, A., Ojha, A., Krejcar, O., Bureš, J., 

Tachecí, I. & Yazidi, A. (2020). Detection of 

abnormality in wireless capsule endoscopy 

images using fractal features, Computers in 

Biology and Medicine, 127, Article 104094, 

https://doi.org/10.1109/TITB.2003.813794. 

Jain, S., Seal, A., Ojha, A., Yazidi, A., Bures, J., 

Tacheci, I. & Krejcar, O. (2021).  A deep CNN 

model for anomaly detection and localization in 

wireless capsule endoscopy images. Computers in 

Biology and Medicine, 137, 104789, 

https://doi.org/10.1016/j.media.2021.102007. 

Jha, D., Ali, S., Hicks, S., Thambawita, V., Borgli, H. 

& P.H. (2021). A comprehensive analysis of 

classification methods in gastrointestinal 

endoscopy imaging. Medical Image Analysis, 70, 

https://doi.org/10.1016/j.media.2021.102007. 

Johnson, K.P., Chen, L., Patel, S. & Yamamoto, T. 

(2023). Artificial intelligence in gastrointestinal 

disease diagnosis: A comprehensive meta-

analysis. Nature Digital Medicine, 6, 84. 

https://doi.org/10.1038/s41746-023-

00784-2. 

Lonseko, Z.M., Adjei, P.E., Du, W., Luo, C., Hu, D., 

Zhu L., Gan T. & Rao N. (2021). Gastrointestinal 

Disease Classification in Endoscopic Images 

Using Attention-Guided Convolutional Neural 

Networks. Applied Science, 11. https:// 

doi.org/10.3390/app112311136. 

Melaku, B.H., Ayodeji, O.S., Belay, E., Abebech, J.B. 

& Zhongmin, J. (2022). Detection and 

classification of gastrointestinal disease using 



DOI: 10.6977/IJoSI.202502_9(1).0010 

A. Bamini./Int. J. Systematic Innovation, 9(1), 111-131 (2025) 

 

130 

 

convolutional neural network and SVM, 

BIOMEDICAL ENGINEERING, Cogent 

Engineering, 9(1). 

Naz, J., Sharif, M., Yasmin, M., Raza, M. & Khan, 

M.A. (2021). Detection and Classification of 

Gastrointestinal Diseases using Machine 

Learning. Current Medical Imaging, 17(4): 479-

490. 

https://doi.org/10.2174/157340561666620092814

4626.  

Nguyen, P.T., Le, M.Q., Dao, Q.T., Tran, V.A., Dao, 

V.H. & Tran, T.H. (2022). Automatic 

classification of upper gastrointestinal tract 

diseases from endoscopic images, 11th 

International Conference on Control, Automation 

and Information Sciences (ICCAIS), Hanoi, 

Vietnam. 442-447, 

https://doi.org/10.1109/ICCAIS56082.2022.9990

445. 

Peery, A.F., Crockett, S.D. & Murphy, C.C. (2022). 

Burden and Cost of Gastrointestinal, Liver, and 

Pancreatic Diseases in the United States: Update 

2021,” Gastroenterology, 162(2), 621–644, 

https://doi.org/10.1053/j.gastro.2021.10.017. 

Ramamurthy, K., George, T.T., Shah, Y. & Sasidhar, 

P. (2022). A Novel Multi-Feature Fusion Method 

for Classification of Gastrointestinal Diseases 

Using Endoscopy Images. Diagnostics. 

12(10):2316. 

https://doi.org/10.3390/diagnostics12102

316. 

Sharib, A., Mariia, D., Noha, G., Sophia, B., Gorkem, 

B., Alptekin, T., Adrian, K., Amar, H. & Yun, 

B.G. (2021). Deep learning for detection and 

segmentation of artefact and disease instances in 

gastrointestinal endoscopy, Medical Image 

Analysis, 70, 1361-8415, 

https://doi.org/10.1016/j.media.2021.102002. 

Sharma, A., Kumar, R. & Garg, P. (2023). Deep 

learning-based prediction model for diagnosing 

gastrointestinal diseases using endoscopy images, 

International Journal of Medical Informatics, 177, 

1386-5056, 

https://doi.org/10.1016/j.ijmedinf.2023.105142. 

Sharmila, V. & Geetha, S. (2022). Detection and 

Classification of GI-Tract Anomalies from 

Endoscopic Images Using Deep Learning, IEEE 

19th India Council International Conference 

(INDICON), Kochi. 1-6, 

https://doi.org/10.1109/INDICON56171.2022.10

039766. 

Smith, J.A., Brown, T.L. & Garcia, R.M. (2022). 

Impact of early detection on survival rates in 

colorectal cancer: A 10-year retrospective study. 

Journal of Gastrointestinal Oncology. 37(4), 562-

571. 

https://doi.org/10.1000/jgo.2022.05.023 

Su, Q., Wang, F., Chen, D., Chen, G., Li, C. & Wei, 

L. (2022). Deep convolutional neural networks 

with ensemble learning and transfer learning for 

automated detection of gastrointestinal diseases, 

Computers in Biology and Medicine, 150, 0010-

4825, 

https://doi.org/10.1016/j.compbiomed.2022.1060

54. 

Sung, H., Ferlay, J., Siegel, R.L. & Laversanne, M. 

(2021). Global Cancer Statistics 2020: 

GLOBOCAN Estimates of Incidence and 

Mortality Worldwide for 36 Cancers in 185 

Countries, CA a Cancer Journal for Clinicians, 

71(3), 209–249, 

https://doi.org/10.3322/caac.21660. 

Theo, V. (2019). “Global burden of 369 diseases and 

injuries in 204 countries and territories, 1990–

2019: a systematic analysis for the Global Burden 

of Disease Study”, The Lancet, 396: 10258, 1204 

– 1222. 

Uçan, M., Kaya, B. & Kaya, M. (2022). Multi-Class 

Gastrointestinal Images Classification Using 

EfficientNet-B0 CNN Model, 2022 International 

Conference on Data Analytics for Business and 

Industry (ICDABI), Sakhir, Bahrain. 1-5, 

https://doi.org/10.1109/ICDABI56818.2022.1004

1447. 

Wong, W.N., Wong, Y.K. & Chan, W.H. (2022). 

Classification of Gastrointestinal Diseases Using 

Deep Transfer Learning, 2nd International 

Conference on Intelligent Cybernetics 

Technology & Applications (ICICyTA), 



DOI: 10.6977/IJoSI.202502_9(1).0010 

A. Bamini./Int. J. Systematic Innovation, 9(1), 111-131 (2025) 

 

131 

 

Bandung, Indonesia, 156-161, 

https://doi.org/10.1109/ICICyTA57421.2022.100

38047. 

Yogapriya, J., Chandran, V., Sumithra, M.G., Anitha, 

P., Jenopaul, P. & Dhas, C.S.G, (2021). 

Gastrointestinal Tract Disease Classification from 

Wireless Endoscopy Images Using Pretrained 

Deep Learning Model, Computational and 

Mathematical Methods in Medicine, 2021-12, 

https://doi.org/10.1155/2021/5940433 

 

 

 

 

 

 

AUTHOR BIOGRAPHY 

 

Dr. A. Bamini is the Head and 

Assistant Professor of the 

Department of Computer 

Applications at The Standard 

Fireworks Rajaratnam College for 

Women in Sivakasi. She completed her Master of 

Computer Applications (MCA) in 2001 from SFR 

College, followed by a Master of Philosophy 

(M.Phil.) from Mother Teresa University in 

2003. In 2018, she earned her doctoral degree (Ph.D.) 

from Karunya University.  She also qualified for the 

National Eligibility Test (NET), demonstrating her 

expertise in the field of computer science. She 

has published 10 journals, presented 6 papers at 

various conferences, and published a book. She has a 

total of 23 years of teaching experience.

 

 

 

 

 

 

 

 


