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Abstract 

In agriculture, crop yield estimation is essential; producers, industrialists, and consumers all 

benefit from knowing the early yield. Manual mango counting typically involves the utilization of 

human labor. Experts visually examine each sample to complete the process, which is time-

consuming, difficult, and lacks precision. For commercial mango production to produce high-

quality fruits from the orchard to the consumer, a quick, non-destructive, and accurate variety 

classification is required. Because of its effectiveness in computer vision, a convolutional neural 

network—one of the deep learning techniques—was chosen for this investigation. For yield 

prediction, a total of eight popular mango cultivars were utilized. A comparison with previously 

trained models was used to assess the proposed model. The performance of the classifiers was 

evaluated using evaluation metrics such as accuracy, loss, area under the receiver operating 

characteristic curve score, precision, recall, F1-score, sensitivity, specificity, positive predictive 

value, negative predictive value, and Cohen’s Kappa performance measure. In terms of 

performance evaluation criteria, it was found that the proposed approach outperformed the pre-

trained models. The suggested model achieved 98.85% accuracy in the test set, which had 800 

images. This outcome demonstrates the tangible applicability of the proposed methodology for 

mango crop estimation. 

Keywords: Convolutional Neural Networks, Deep Learning, Early Detection, Machine 

Learning 

1. Introduction 

Precise prediction of crop production levels is 

essential for developing efficient farming practices 

and preserving food security in a rapidly changing 

world. Crop yield affects food productivity and is 

crucial in ensuring food availability and safety, as 

recognized by policymakers, farmers, and consumers 

alike. Therefore, predicting crop yields offers a 

significant advantage in supporting financial and 

managerial decisions. Crop yield is the ratio of 

agricultural input to output, measured as the quantity 

of yield per unit area of cultivated land. Hence, crop 

yield is a typical indicator of agricultural productivity. 

Crop productivity can be affected by various factors, 
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such as pests and diseases, environmental changes, 

farming techniques, and consumer demand. 

Computer vision-based automatic crop yield 

estimation greatly helps agronomists to identify and 

categorise plant diseases, allowing them to take 

necessary measures at an early stage to prevent further 

damage to the plant (Xin Zhang et al., 2019). A simple 

plant disease detection system can be used as an 

efficient tool by small-scale farmers for early disease 

detection. In large-scale cultivation, the system can be 

mounted on autonomous vehicles that cover the entire 

region with continuous video coverage or image 

capturing which is monitored timely and accurately by 

the agronomist. This approach can help detect, 

diagnose, and treat pathological problems to a great 

extent. Over the decades, many types of research have 

been developed in the field of plant disease detection. 

Numerous machine learning algorithms have been 

created, which learn iterative from the given data and 

build the model without explicit programming, 

providing an efficient tool for plant disease detection, 

not only for identification. 

In this study, the proposed model was compared 

and analyzed with nine different convolutional pre-

trained neural networks, namely: AlexNet, VGG16, 

VGG19, DenseNet-121, ResNet-101, MobileNetV2, 

Xception, NasNet-Mobile, and Inception-v networks. 

The experiments involved tweaking the 

hyperparameters to improve the performance of the 

convolutional neural network (CNN) model. The 

study hypothesized that deep learning models would 

help phytopathologist and farmers estimate yield at an 

early stage. 

 The contents of the paper are organized as 

follows: Section 2 provides a survey of the related 

literature. Section 3 presents the dataset for 

experimentation and testing, as well as experiments 

designed to study the elements that impact the overall 

performance and effectiveness of the evolutionary 

system. Section 4 presents the results and Section 5 

provides an analysis of the proposed method. The 

article ends with the conclusion and recommendations.  

 

2. Literature Survey 

The literature contains various works related to 

crop yield estimation. The development of agricultural 

deep learning technology, especially in yield 

estimation detection, has only started in recent years 

and remains somewhat limited. Deep learning, a 

subset of machine learning, helps identify and classify 

different plant diseases (Xin Yang et al., 2016). Deep 

learning utilizes multi-level depiction and 

generalization by employing multi-layer nonlinear 

modules for feature extraction and transformation, 

distinguishing it from traditional machine learning 

(Fine, 2006; Fuentes et al., 2017). CNN is a deep 

learning algorithm that takes an image as the input, 

learns the objects and patterns within the image, and 

differentiates it from others (Grinblat et al., 2016). A 

smartphone-assisted CNN model is used for crop 

disease detection using a publicly available dataset to 

identify 14 different crops and 26 different diseases, as 

CNN requires less pre-processing compared to other 

algorithms, concerning hyper-spectral images. 

However, CNN faces challenges in processing the 

high-dimensional information in multidimensional 

data cubes, which leads to high computational time 

(Mohanty et al., 2016; Paoletti et al., 2018). Nuclear 

discriminant analysis based on the Spectral Vegetation 

Index method is used for the detection and 

classification of yellow rust, aphids, and powdery 

mildew in winter wheat (Shi et al., 2017). In hyper-

spectral reflecting datasets at the leaf and canopy 

levels, the model outperforms the traditional linear 

discriminant method for classifying healthy leaf and 

diseased wheat leaves. A leaf-based CNN model for 

disease recognition and classification successfully 

classified 13 different diseases, with precision ranging 

from 91% to 98% (Sladojevic et al., 2016). A dataset 

containing 79,265 images was introduced by 

Arsenovic et al., 2019).  Two types of augmentation 

techniques were applied to increase the dataset size, 

and a new two-stage neural network architecture was 

proposed for the classification of plant diseases based 

on the current environment. The trained model 

achieved an accuracy of 93.67%. A method was 

developed to classify citrus disease using the ΔE 

colour difference algorithm to segment the diseased 

area. This method achieved 99.9% accuracy (Ali et al., 

2017). A novel cucumber disease recognition model 

was developed using three pipelined procedures: 

segmenting diseased leaves with K-means clustering, 

color and shape detection, and classification of 

diseased leaves by sparse representation. The 

developed method was compared with other methods 

and achieved a classification performance of 85.7% 

(Zhang et al., 2017). A new CNN architecture with two 

deep classifiers and a trainable visualization method 

for plant disease classification was proposed. The 

architecture trained two classifiers in parallel, and the 

area over perturbation curve was used to compare the 

proposed method with the existing state of art method, 

achieving a performance of approximately 0.907 

(Brahimi et al., 2019). Different plant species were 

classified, and a content-based data retrieval method 
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was used to search for plant species using a deep 

learning approach (Gyires-Tóth et al., 2019). The 

EfficentNet deep learning architecture was proposed 

to detect plant diseases. Plant village datasets were 

tested on EfficientNet, achieving accuracies of 

99.91% and 99.97% for the original images, and 

98.42% and 99.39% for the enhanced images (Atila et 

al., 2021).  

 

3. Materials and Methods 

3.1. Dataset 

In this study, a temporal mango crop dataset of 

4,000 images, including eight different cultivars, was 

used. The dataset of images, captured under real 

cultivation conditions, contains various objects like 

ground, other parts of the plant, varying illumination 

conditions, occlusions, etc. Fig. 1 and Table 1 depict 

the dataset and provide detailed information about it. 

A large dataset is required for the robust performance 

of CNN models. The mango fruit dataset was built 

under a limited set of conditions; to improve 

variability and increase the dataset size. Image 

augmentation techniques such as rotation, reflection, 

translation, scaling, and shear were applied to the 

dataset images for both the x- and y-axes. The entire 

dataset was initially divided into two subsets: the 

training set and the testing set, with images randomly 

split in an 80/20 ratio. A Python script was developed 

to automatically divide dataset images into two sets, 

which includes size reduction and normalizing to a 

224×224 pixel size. Fig. 2 provides an overview of the 

proposed workflow. 

 

3.2. Deep Learning Models 

A CNN is a deep learning algorithm that takes an 

input image and assigns importance to various features 

and objects within the image to distinguish them. The 

pre-processing required for a convolution network is 

much lower than for other classification algorithms. 

Several innovative ideas were have contributed to the 

evolution of CNNs, including optimization of 

parameters using various activation and loss functions, 

the development of standardized architectures, etc. 

(Khan et al., 2020; Zhou, 2020). An overview of the 

deep learning model is depicted in Fig. 3. 

In this study, an FRCNN ResNet-50 neural 

network models were considered to estimate eight 

different cultivars of mango fruit crops and were 

compared with nine well-know pre-trained deep 

networks: AlexNet, VGG-16, VGG-19, ResNet-101, 

DenseNet-121, NasNet-Mobile, Inception-V3, 

Xception, and Mobilenet-V2.  

 

Fig. 1. Dataset description. 
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Table 1. Detailed information of the dataset. 

 

SI. no. Image dataset Number of samples 

1 Mallika 500 

2 Raspuri 500 

3 Arka Arun 500 

4 Malgoa 500 

5 Badam 500 

6 Kesar 500 

7 Sindoora 500 

8 Alphanso 500 

 

 

 

 

 

 
 

Fig. 2. Flowchart of the overall study. Abbreviations: NPV: Negative predictive value; PPV: Positive predictive value; Roc-

AUC: Area under the receiver operating characteristic curve. 



DOI: 10.6977/IJoSI.202502_9(1).0001 

M.V. Neethi, P. Raviraj, etc./Int. J. Systematic Innovation, 9(1), 1-18 (2025) 

5 

 

AlexNet, designed by Alex Krizhevsky, is a 

feedforward CNN architecture consisting of eight 

layers: five convolutional layers containing several 

kernels and three fully connected layers (f6, f7 and f8) 

(Krizhevsky et al., 2012). VGG-16 is a deep CNN with 

a depth of 16 layers, consisting of five convolutional 

blocks (13 layers) and three fully connected layers. 

The network consists of five larger blocks, proposed 

by Karen Simonyan (Simonyan et al. 2015). VGG19 

is deeper than VGG 16, with 19 layers in total. It has 

five convolutional blocks (16 layers) followed by three 

fully connected layers. The ResNet CNN model is 

made up of residual blocks. ResNet-50 is a CNN with 

50 layers, consisting of 48 convolutional layers, one 

MaxPool layer, and one average pool layer. The depth 

of ResNet-101 is 101 layers (He et al., 2016). 

DenseNet-121, also a CNN model, has four dense 

blocks with varying numbers of layers i.e., [6, 12, 24, 

16]. The DenseNet-121 architecture was designed by 

Gao Huang (Huang et al., 2018). NasNet-Mobile is a 

CNN that explores an architectural building block on 

a small dataset and then assigns the block to a larger 

dataset, training the network by adding more layers 

into the block (Zhou & Diamos, 2018). Inception-V3 

is a CNN model that mainly focuses on utilizing less 

computational power (Szegedy et al., 2016). It is a 48-

layer deep network that stacks 11 inception modules. 

Each module consists of pooling layers and 

convolutional filters with rectified linear units as the 

activation function. Xception CNN stands for an 

extreme version of inception with a modified depth-

separable convolution. The Xception architecture has 

36 convolutional layers, with the initial two layers of 

convolution followed by depth-separable layers and 

fully connected layers (Chollet, 2017). MobileNet-V2 

is a CNN that uses depth-wise separable convolution 

as efficient building blocks. It is a 53-layer deep 

network with 52 convolution layers and a fully 

connected layer (Sandler et al., 2018).  

In this study, the bottom-up pathway was 

constructed using Fast RCNN-ResNet-50, with each 

of its five convolution modules (C1 through C5) 

containing multiple convolution layers (Yang et al. 

2019). The spatial dimension was halved at each level 

from C1 to C5, reducing the C5 channel depth to 256-

d (P5). Moreover, the initial feature map layer for 

object prediction was created using a 1×1 convolution 

filter. The nearest neighbor upsampling technique was 

used in a top-down manner to upsample the preceding 

layer by a factor of two. The pixel-by-pixel 1×1 

filtered C4 and the upsampled P5 were combined to 

form P4. The same process was used to create P3 and 

P2. The network used its built-in multi-scale 

pyramidal structure of deep convolutional networks to 

construct feature pyramids and generate autonomous 

predictions at different levels (P2, P3, P4, P5, and P6) 

for multiscale object detection. The general 

characteristics and structural details of all the CNN 

models are depicted in Tables 2 and 3. All models were 

trained on the Imagenet dataset (Neethi & Raviraj, 

2024).  

 

3.3. Performance Evaluation of Deep Learning 

Models 

To compare the performance of the CNN models, 

10 performance indices were calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
 

(1) 

 

𝐿𝑜𝑠𝑠 =
−1

𝑁
∑ ∑ 𝑦𝑖𝑗 ∗ log (𝑝𝑖𝑗)

𝑀

𝑗−1

𝑁

𝑖=1

 
(2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(3) 

  
𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(4) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
1

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

 (5) 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(6) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

=
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(7) 

 
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉)

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(8) 

 
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉)

=
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(9) 

 

𝐶𝑜ℎ𝑒𝑛 𝐾𝑎𝑝𝑝𝑎 =
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒
 (10) 
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In this study, positive and negative classes were  

 

Fig. 3. Overview of the deep convolutional model. 

 

Table 2. Characteristics of convolutional neural networks used. 

Network Depth Parameters Trained  

parameters 

Input layer 

size 

Output layer 

size 

Epochs 

AlexNet 8 21,619,464 32,776 224 by 224 7 by 7 100 

VGG-16 16 14,718,792 4,104 224 by 224 7 by 7 100 

VGG-19 19 20,028,488 4,104 224 by 224 7 by 7 100 

FRCNN ResNet-50 50 23,604,104 16,392 224 by 224 7 by 7 100 

ResNet-101 101 42,674,568 16,392 224 by 224 7 by 7 100 

Inception-V3 159 21,819,176 16,392 224 by 224 7 by 7 100 

NasNet-Mobile - 4,278,172 8,456 224 by 224 7 by 7 100 

MobileNet-V2 53 2,268,232 10,248 224 by 224 7 by 7 100 

DensNet-121 121 7,045,704 8,200 224 by 224 7 by 7 100 

Xception 71 20,877,872 16,392 224 by 224 7 by 7 100 

 

Table 3. Structural details of the convolutional neural networks. 

Network 
Number of convolutional 

layers 

Number of fully 

connected layers 
Pooling Softmax layer Filters 

AlexNet 5 3 3 1 256 

VGG-16 13 3 5 1 512 

VGG-19 16 3 5 1 512 

FRCNN ResNet-50 16 (residual blocks) 1 1 1 2048 

ResNet-101 33 (residual blocks) 1 1 1 2048 

DensNet-121 4 (dense blocks) 1 1 1 1024 

NasNet-Mobile - 1 1 1 1056 

Inception-V3 11 (inception blocks) 1 1 1 2048 

Xception 36 1 1 1 2048 

MobileNet-V2  7 (bottleneck) 1 1 1 1024 
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In this study, positive and negative classes were 

assigned to mango fruit and non-mango fruit regions. 

Hence, true positive and true negative represent the 

number of correctly diagnosed mango and non-mango 

regions, respectively. False positive and false negative 

represent the number of incorrectly diagnosed mango 

and non-mango regions, respectively. To evaluate the 

overall performance of the CNN model, the area under 

the receiver operating characteristic curve (Roc-AUC) 

and Cohen’ kappa scores were calculated. 

 

4. Results  

The performance of all 10 CNN model is 

depicted in Table 4. In this study, the training dataset 

consists of 4,000 images, and the validation dataset 

consists of 800 images. The networks were able to 

classify mango and non-mango regions of mango fruit 

crops, with a Roc-AUC score in the range of 0.96 to 

0.99. The MobileNet-V2 CNN model outperformed 

all the other models. The performance of all the 10 

CNN models was measured using accuracy, loss, Roc-

AUC score, precision, recall, F1-score, sensitivity, 

specificity, positive predictive value (PPV), negative 

predictive value (NPV), and Cohen’s Kappa 

performance measure. The best model is considered 

based on the overall performance of all these measures. 

The proposed FRCNN ResNet-50 network 

achieved a RoC-AUC score of                                          

0.999 (accuracy: 0.9863; loss: 0.07; precision: 0.99; 

recall: 0.99; F1-score: 0.99; sensitivity: 0.94; 

specificity: 0.90; PPV: 0.96; NPV: 0.95; Cohen’s 

Kappa: 0.98) in the training dataset and a RoC-AUC 

score of 0.989 (accuracy: 0.9815; loss: 0.04; precision: 

0.98; recall: 0.98; F1-score: 0.98; sensitivity: 0.92; 

specificity: 0.87; PPV: 0.88; NPV: 0.97; Cohen’s 

Kappa: 0.97) in the validation dataset. The time taken 

for each epoch was 2 seconds per step and 119 

iterations per epoch.       

 The MobileNet-V2 network also achieved better 

results after the FRCNN ResNet-50, with a RoC-AUC 

score of 0.98 (accuracy: 0.97; loss: 0.09; precision: 

 

Table 4. Overall performance of all the convolutional model. 

Model 

 
Data Acc Loss 

Roc- 

AUC 

score 

Pre Rec F1 

Co-

hen’s 

kappa 

Sen Spe* PPV NPV 

AlexNet 
Train 0.8245 0.4532 0.9657 0.85 0.82 0.81 0.8223 0.87 0.79 0.8901 0.6785 

Val 0.80 0.4328 0.9566 0.83 0.82 0.82 0.8103 0.9012 0.8345 0.9432 0.7012 

NasNet-
Mobile 

Train 0.9356 0.1695 0.9980 0.96 0.95 0.95 0.9366 0.94 0.76 0.8293 0.9206 

Val 0.9275 0.1410 0.9977 0.95 0.94 0.94 0.9285 0.97 0.64 0.9552 0.7293 

DenseNet 
Train 0.9497 0.1588 0.9980 0.96 0.95 0.96 0.9393 0.9601 0.6765 0.8562 0.8943 

Val 0.945 0.1354 0.9983 0.96 0.95 0.94 0.9371 0.99 0.6765 0.9833 0.7071 

VGG-16 
 

Train 0.8986 0.2764 0.9934 0.90 0.89 0.90 0.87 0.8909 0.7209 0.7002 0.9010 

Val 0.8862 0.2918 0.9903 0.90 0.89 0.89 0.8783 0.91 0.67 0.8815 0.7338 

VGG-19 
Train 0.8844 0.3631 0.9905 0.88 0.87 0.87 0.934 0.9064 0.6395 0.8776 0.7076 

Val 0.8687 0.3542 0.991 0.88 0.87 0.87 0.901 0.97 0.55 0.6830 0.9482 

Inception-
V3 

Train 0.9505 0.1170 0.9993 0.97 0.94 0.95 0.9518 0.9878 0.5851 0.9442 0.8716 

Val 0.946 0.1324 0.9991 0.96 0.95 0.95 0.9385 1.0 0.58 1.0 0.71 

 

Xception 
 

Train 0.7110 0.8199 0.9674 0.76 0.61 0.71 0.6444 0.98 0.103 0.8235 0.7586 

Val 0.5912 0.8982 0.9526 0.71 0.59 0.52 0.5328 0.96 0.06 0.8571 0.5052 

ResNet-
101 

Train 0.96 0.1337 0.9987 0.97 0.96 0.97 0.9518 0.7901 0.9619 0.8791 0.9289 

Val 0.963 0.1096 0.9987 0.97 0.96 0.96 0.9585 0.7605 0.99 0.9870 0.8048 

Mo-
bileNetV2 

Train 0.9371 0.1942 0.9974 0.95 0.93 0.94 0.9238 0.9688 0.6024 0.8714 0.8742 

Val 0.9312 0.1741 0.9979 0.95 0.93 0.93 0.9214 0.99 0.6024 0.9821 0.6875 

FRCNN-

ResNet 50 

Train 0.9715 0.0912 0.9993 0.98 0.97 0.98 0.9657 0.9844 0.7802 0.9461 0.9274 

Val 0.9685 0.0797 0.9996 0.97 0.97 0.97 0.9642 0.99 0.76 0.9870 0.8048 

Abbreviations: Acc: Accuracy; F1: F1-Score; NPV: Negative predictive value; PPV: Positive predictive value; Pre: Precision; Rec: Recall; 

Sen: Sensitivity; Spe: Specificity; Val: Validation. 
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0.98; recall: 0.98; F1-score: 0.98; sensitivity: 0.92; 

specificity: 0.95; PPV: 0.96; NPV: 0.95; Cohen’s 

Kappa: 0.98) and a RoC-AUC score of 0.989 

(accuracy: 0.98; loss: 0.05; precision: 0.98; recall: 0.98; 

F1-score: 0.98; sensitivity: 0.92; specificity: 0.96; PPV: 

0.95; NPV: 0.89; Cohen’s Kappa: 0.97) in the training 

and validation datasets, respectively. The time taken 

for each epoch was 6 seconds per step, with 119 

iterations per epoch. 

The ResNet-101 network achieved a RoC-AUC 

score of 0.96 and an accuracy of 0.71, with overall 

performance much lower compared to other networks. 

The time taken for each epoch was 11 seconds per step, 

with 119 iterations per epoch. The NasNet-Mobile 

network also achieved good results, close to the 

Xception network. DenseNet, Vgg-19, Inception-V3, 

and AlexNet networks performed well in classifying 

healthy and diseased leaves, with accuracy in the range 

of 0.91–0.94. VGG-16 achieved an accuracy of 0.88. 

  Fig. 4 shows the overall performance of all the 

networks using a radar plot. The training and 

validation process is shown in Fig. 5. A confusion 

matrix was calculated to simplify the understanding of 

the performance of all the networks on both training 

and validation datasets, as shown in Fig. 6. In the 

confusion matrix, the eight classes of mango crops 

were represented by class 0 to class 7: class 0 —

Mallika, class 1—Raspuri, class 2—Arka Arun, class 

3—Malgoa, class 4—Badam, class 5—Kesar, class 

6—Sindoora, and class 7—Alphanso (Table 1). By 

observing all the model’s confusion matrices, it can be 

noted that the major misclassifications were between 

class 0 and class 1, i.e., Mallika and Raspuri. The 

model failed to classify the images captured under 

field conditions due to the presence of other parts of 

the plant, the ground, and other background objects. 

Even after tuning hyperparameters, the results did not 

show considerable variance. The reputable results 

were achieved for 100 epochs. The classification 

accuracy of each mango fruit crop class for all the 

convolutional models is depicted in Table 5, and the 

respective chart is shown in Fig. 7. Receiver operating 

characteristic curve for each class are plotted and 

presented in Fig. 8 for all the convolutional models. 

 

 

5. Discussion 

In this study, an FRCNN model was proposed and 

compared with well known CNNs to estimate mango 

fruit crop yields. The results showed that proposed 

method could efficiently estimate mango crop yield 

with the highest accuracy. Although the proposed 

model and MobileNet-V2 both gave the same 

accuracy results, the proposed model could diagnose 

plant disease with higher sensitivity, lower specificity, 

 

Fig. 4. Radar plot of the 10 individual networks. Abbreviations: NPV: Negative predictive value; PPV: Positive predictive 

value; Roc_Auc: Area under the receiver operating characteristic curve. 
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and greater PPV when compared to the MobileNet-V2 

   
6. NasNet-Mobile 

 
7. Inception-V3 

 
8. Xception 

 
9. MobileNet-V2 

 
10. FRCNN ResNet-50 

Fig. 5. Accuracy (right) and loss (left) plots of 10 convolutional neural networks for training and validation datasets. 
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6. NasNet-Mobile 

 
 

7. Inception-V3 

  
8. Xception 

 

 
9. MobileNet-V2 

 
 

10. FRCNN-ResNet-50 

Fig. 6. Confusion matrices of 10 convolutional neural networks for training and validation datasets. 
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and greater PPV when compared to the MobileNet-V2 

network. The proposed model has a depth convolution 

structure, and the network becomes lighter as it goes 

deeper. Its inverted residual block helps improve 

efficiency and boosts the robustness of the model.  

The MobileNet-V2 network achieved an 

accuracy of 85.12% using 4,000 images of five 

different classes of fruits. In one study, fruit images 

were used to detect the diseases present in the images, 

and the results were compared with MobileNetV1, 

InceptionV3, and DenseNet121 (Xiang et al., 2019). 

The classification accuracy of all eight classes of fruit 

crops for MobileNet-V2 is as follows: class 0—

diseased coffee, 99%; class 1—grape black rot, 86%; 

class 2—grape esca, 100%; class 3—grape healthy, 

100%; class 4—grape leaf blight, 100%; class 5—

healthy coffee, 100%; class 6 —diseased mango, 

100%; class 7—healthy mango, 100%. A 

Table 5. Classification accuracy of the fruit crop leaves dataset for each class. 
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100 100 83 85 37 99 100 98 100 100 100 

Malgoa 100 93 96 91 83 94 99 98 100 99 100 

Badam 100 63 99 98 83 100 100 100 100 100 100 

Kesar 100 98 100 100 67 100 100 100 100 100 100 

Sindoora 100 100 75 83 100 100 99 100 100 100 100 

Alphanso 100 100 98 86 100 98 100 100 97 100 100 

Overall 

Accuracy 

of the 

Model 

100 91.3 88.6 86.87 59.1 93.1 94.5 
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Fig. 7.  Classification accuracy chart of the fruit crop leaves dataset for each class. 
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convolutional network was constructed to classify 22 Train Data Validation data 
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different plant disease classes. The classification 

  

5. NasNet-Mobile 

  

6. Inception-V3 

  

7. Xception 

 
 

8. MobileNet-V2 

  

9. FRCNN ResNet-50 

Fig. 8. Receiver operating characteristic curve of 10 convolutional neural networks for training and validation datasets. 
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convolutional network was constructed to classify 22 

different plant disease classes. The classification 

accuracy of the network ranged from 33% to 98%, 

with an average accuracy of 86.2%. The network 

failed to classify a few classes due to the smaller 

number of training samples (Dyrmann et al., 2016). 

The Tomato Diseases and Pests dataset, which 

contains challenging images of diseases and pests, was 

used. This dataset includes several inter-and extra-

class variations, such as infection status and location 

in the plant. VGGNet and ResNet were combined to 

form deep learning meta-architectures formed to train 

the tomato images, achieving an accuracy of 80% 

(Fuentes et al., 2017; Saleem et al., 2019). Hybrid 

convolutional models have been shown to help to 

detect plant diseases, offering a new direction for plant 

disease detection (Punam & Gole, 2021), which could 

be adopted in future studies. Better data retrieval 

systems assist in retrieving suitable plant disease 

datasets, and texture techniques with machine learning 

algorithms can help select the best dataset (Dhingra & 

Bansal, 2020). The limitation of this study is that the 

networks could not classify images captured under 

field conditions, and pre-processing was required for 

images from field conditions. Additionally, the dataset 

size should be increased, and more images need to be 

used for training.  

The study provides the following contributions 

for the literature: 

• Introduces a novel FRCNN model that 

enhances the estimation of mango crop yield 

and the diagnosis of plant diseases, 

contributing to the body of knowledge on 

agricultural applications of CNNs. 

• Contributes to the literature by 

demonstrating how an FRCNN model can 

achieve higher sensitivity and PPV in plant 

disease diagnosis compared to other models. 

• The study contributes by identifying key 

limitations in current approaches, such as 

the need for larger datasets and better 

handling of field-captured images, which 

can guide future developments in the field. 

• The study suggests that hybrid convolutional 

models and improved data retrieval systems 

could significantly advance the field of plant 

disease detection. 

 

6. Conclusion 

An efficient approach to estimating the harvest of 

mango fruits was proposed in this work. The dataset 

used to train the proposed approach consisted of 

images of eight different mango varieties. Nine pre-

trained models, of which only the final layer was 

altered, were compared with the proposed FRCNN 

model. Each model’s classification performance was 

improved by fine-tuning the model. To improve 

accuracy and reduce error rates, the models were 

subjected to validation and optimization. The 

proposed model’s accuracy was determined to be 

98.85%. The results demonstrated that pre-trained 

models were unable to accurately estimate mango 

yield. As a result, a novel CNN architecture was 

proposed and applied in this study. 

Adapting the CNN model presented in this work 

improves mango fruit yield estimation performance. 

This method will assist individuals with limited 

knowledge of mango crop yield estimation, as it can 

be difficult to receive proper guidance from 

agriculturists for manual variety determination and 

categorization. At the same time, it will enable precise, 

quick, and reliable classification. By utilizing various 

deep learning techniques, we hope to expand the scope 

of this study and include more types and data in the 

future. 

 

Acknowledgments 

The support by GSSS Institute of Engineering 

and Technology for Women, Affiliated to 

Visvesvaraya Technological University (VTU), 

Belagavi, India. 

 

References 

Ali, H., Lali, M.I., Nawaz, M.Z., Sharif, M., & 

Saleem, B.A. (2017). Symptom-based automated 

detection of citrus diseases using color histogram 

and textural descriptors. Computers and 

Electronics in Agriculture, 138, 92–104. 

Arsenovic, M., Karanovic, M., Sladojevic, S., 

Anderla, A., & Stefanović, D. (2019). Solving 

current limitations of deep learning-based 

approaches for plant disease detection. Symmetry, 

11, 939. 

Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). 

Plant leaf disease classification using EfficientNet 

deep learning model. Ecological Informatics, 61, 

101182. 

Bedi, P., & Gole, P. (2021). Plant disease detection 

using a hybrid model based on convolutional 

autoencoder and convolutional neural network. 

Artificial Intelligence in Agriculture, 5, 90–101. 

Brahimi, M., Mahmoudi, S., Boukhalfa, K., & 



DOI: 10.6977/IJoSI.202502_9(1).0001 

M.V. Neethi, P. Raviraj, etc./Int. J. Systematic Innovation, 9(1), 1-18 (2025) 

17 

 

Moussaoui, A. (2019). Deep interpretable 

architecture for plant diseases classification. 2019 

Signal Processing: Algorithms, Architectures, 

Arrangements, and Applications (SPA), 111–116. 

Chollet, F. (2016). Xception: Deep learning with 

depthwise separable convolutions. 2017 IEEE 

Conference on Computer Vision and Pattern 

Recognition (CVPR), 1800–1807. 

Dhingra, S., & Bansal, P. (2020). Employing 

divergent machine learning classifiers to upgrade 

the preciseness of image retrieval systems. 

Cybernetics and Information Technologies, 20, 

75–85. 

Fine, T.L., Lauritzen, S.L., Jordan, M., Lawless, J., & 

Nair, V. (1999). Feedforward neural network 

methodology. Springer-Verlag, Berlin, 

Heidelberg. 

Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. 

(2017). A robust deep-learning-based detector for 

real-time tomato plant diseases and pests 

recognition. Sensors, 17(9), 2022. 

Grinblat, G.L., Uzal, L.C., Larese, M.G., & Granitto, 

P.M. (2016). Deep learning for plant identification 

using vein morphological patterns. Computers 

and Electronics in Agriculture, 127, 418–424. 

Gyires-Tóth, B.P., Osváth, M., Papp, D., & Szűcs, G. 

(2019). Deep learning for plant classification and 

content-based image retrieval. Cybernetics and 

Information Technologies, 19(1), 88–100. 

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep 

residual learning for image recognition. 2016 

IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 770–778. 

Heredia, I., Iglesias, L.L., Vykozlov, V., & Orviz, P. 

(2019). Plants classification engine. 

DIGITAL.CSIC. 

Huang, G., Liu, Z., & Weinberger, K.Q. (2016). 

Densely connected convolutional networks. 2017 

IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2261–2269. 

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A.S. 

(2019). A survey of the recent architectures of 

deep convolutional neural networks. Artificial 

Intelligence Review, 53, 5455–5516. 

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). 

ImageNet classification with deep convolutional 

neural networks. Communications of the ACM, 

60, 84–90. 

Mohanty, S.P., Hughes, D.P., & Salathé, M. (2016). 

Using deep learning for image-based plant disease 

detection. Computers and Electronics in 

Agriculture, 7, 1419. 

Neethi, M.V., & Raviraj, P. (2024). Fast region-based 

convolutional neural network ResNet-50 model 

for on-tree mango fruit yield estimation. 

Indonesian Journal of Electrical Engineering and 

Computer Science, 33, 1084. 

Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., 

& Chen, L. (2018). MobileNetV2: Inverted 

residuals and linear bottlenecks. 2018 IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition, 4510–4520. 

Saleem, M.H., Potgieter, J., & Arif, K.M. (2019). 

Plant disease detection and classification by deep 

learning. Plants, 8. 

Shi, Y., Huang, W., Luo, J., Huang, L., & Zhou, X. 

(2017). Detection and discrimination of pests and 

diseases in winter wheat based on spectral indices 

and kernel discriminant analysis. Computers and 

Electronics in Agriculture, 141, 171–180. 

Simonyan, K., & Zisserman, A. (2014). Very deep 

convolutional networks for large-scale image 

recognition. CoRR, abs/1409.1556. 

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, 

D., & Stefanovic, D. (2016). Deep neural 

networks-based recognition of plant diseases by 

leaf image classification. Computational 

Intelligence and Neuroscience, 6, 1–11. 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & 

Wojna, Z. (2015). Rethinking the inception 

architecture for computer vision. 2016 IEEE 

Conference on Computer Vision and Pattern 

Recognition (CVPR), 2818–2826. 

Xiang, Q., Wang, X., Li, R., Zhang, G., Lai, J., & Hu, 

Q. (2019). Fruit image classification based on 

MobileNetV2 with transfer learning technique. 

Proceedings of the 3rd International Conferencen 

Computer Science and Application Engineering. 

Yang, K., Qinami, K., Fei-Fei, L., Deng, J., & 

Russakovsky, O. (2020). Towards fairer datasets: 

Filtering and balancing the distribution of the 

people subtree in the ImageNet hierarchy. 

Proceedings of the 2020 Conference on Fairness, 

Accountability, and Transparency (FAT '20)*, 

547–558. 

Yang, J., Sun, J., Ren, Y., Li, S., Ding, S., & Hu, J. 

(2023). GACP: Graph neural networks with 

ARMA filters and a parallel CNN for 

hyperspectral image classification. International 



DOI: 10.6977/IJoSI.202502_9(1).0001 

M.V. Neethi, P. Raviraj, etc./Int. J. Systematic Innovation, 9(1), 1-18 (2025) 

18 

 

Journal of Digital Earth, 16(1), 1770–1800. 

Yang, X., & Tingwei, G. (2017). Machine learning in 

plant disease research. European Journal of 

Biomedical Research, 6–9. 

Zhang, S., Wu, X., You, Z., & Zhang, L. (2017). Leaf 

image-based cucumber disease recognition using 

sparse representation classification. Computers 

and Electronics in Agriculture, 134, 135–141. 

Zhang, X., Han, L., Dong, Y., Shi, Y., Huang, W., 

Han, L., González-Moreno, P., Ma, H., Ye, H., & 

Sobeih, T. (2019). A Zhou, D.X. (2020). Theory 

of deep convolutional neural networks: 

Downsampling. Neural Networks, 124, 319–327. 

deep learning-based approach for automated yellow 

rust disease detection from high-resolution 

hyperspectral UAV images. Remote Sensing, 

11(13), 1554. 

Zhou, Y., & Diamos, G. (2018). Neural architect: A 

multi-objective neural architecture search with 

performance prediction. arXiv preprint 

arXiv:1804.09081. 

 

AUTHOR BIOGRAPHIES 

Neethi M. V. completed her doctorate 

degree in Computer Science and 

Engineering in the area of machine 

learning and received an M.Tech. 

degree in Computer Cognition 

Technology from University of Mysore, India, in 

2015. She also received her B.E. from Visvesvaraya 

Technological University, India, in 2013. She is 

currently an assistant professor in the Depertment of 

Computer Science and Engineering—Data Science at 

ATMECE, VTU, Karnataka, India. Her research 

areas include machine learning, data mining, and 

image processing. She can be contacted at the 

following email addresses: neethi.m@gmail.com or 

neethimv_cd@atme.edu.in.  

 

Raviraj P. completed his doctorate 

degree in Computer Science and 

Engineering in the area of Image 

Processing. He holds the position of 

Director-IQAC and Professor in the 

Department of Computer Science and Engineering at 

GSSS Institute of Engineering and Technology for 

Women, Mysore, Karnataka. He has 19 years of 

teaching and research experience. He has published 

more than 92 papers in international journals and 

conferences. Five research scholars have completed 

their Ph.D. under his guidance at various universities. 

He is currently guiding Ph.D. research scholars in the 

areas of image processing, pervasive and cloud 

computing, bio-inspired algorithms, and robotics. He 

has received a project grantof Rs.5 Lakhs from the 

VGST, Govt. of Karnataka, for the “Underwater 

Robotic Fish for Surveillance and Pollution 

monitoring.” He has received the awards and 

recognitions such as the “Rhastriya Gaurav Award, 

2015,” “Shri P.K. das Memorial Best Faculty Award, 

2012,” and “Young Achiever Award, 2016.” He can 

be contacted at the email address: 

raviraj@gsss.edu.in.

 

 


