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Abstract 

Cloud computing faces challenges in task scheduling, which is crucial for cost-efficient execution and resource utili-

zation. Current methods face computational complexity, especially in large-scale data centres. This paper proposes a 

novel approach that considers job dependencies and task execution times to reduce make-span, minimize energy con-

sumption, and balance resource loads.  VMs are allocated based on workflow task requirements, using thresholds for 

task levels and durations to manage execution priorities. Tasks with higher dependencies and longer execution times 

are prioritized, ensuring efficient resource utilization and energy savings. The method employs queues for different 

task intensities, streamlining VM allocation by organizing tasks with additional metadata like intensities, arrival times, 

and deadlines. Historical scheduling logs (HSLs) are used to generate appropriate VMs, with new VMs created if no 

matching records exist in the HSLs. The proposed solution optimizes scheduling using an enhanced Multi-Tactic 

Harris Hawks Optimization (MTHHO) algorithm, which addresses the limitations of traditional HHO by incorporating 

Sobol sequences, elite opposition-based learning, and improved energy updating techniques to enhance population 

diversity, adaptability, and convergence accuracy while avoiding local optima using the Gaussian walk learning. The 

result shows that the proposed method of QoS performances attained less Makespan, energy consumption of 0.20, 

throughput of 2.4, and execution time of 16.75 with effectively allocated resources of 98% when compared to the 

previous methods in cloud computing. Therefore, the proposed heuristic-based MTHHO method balanced the load 

and allocated the resources effectively to improve QoS performances. 

Keywords: Cloud Computing; Thresholds; Energy Consumption; Queuing; Task Scheduling; Multi-Tactic HHO; non-

linear weight; Gaussian walk learning ; Load Balancing; Makespan; 

1. Introduction 

Cloud computing systems were created based on 

the enormous growth in internet data processing. 

When it comes to giving technology facilities online, 

cloud computing is crucial. Without direct active con-

trol, it gives users access to computer system resources 

like data storage and processing power. Three different 

services about infrastructure, platforms, and software 

can be offered by a cloud. Infrastructure as a Service 

(IaaS), which offers infrastructure services including 

storage systems and computing resources, is the first 

service. Platform as a service (PaaS), the second offer-

ing, allows customers to generate presentations based 

on the platform that is made available. The third ser-

vice, known as software as a service (SaaS), offers 

customers the option of using software straight from 

the cloud without having to install anything locally 

[Devaraj etc., 2020, Alam 2021]. Cloud computing al-

lows for the flexible and elastic provision of varied 

computing resources in response to user demands; in 

recent years, such large-scale applications have used 

cloud computing at an increasing rate [Cui etc., 2021]. 

A cloud data centre’s infrastructure typically com-

prises thousands of big computing hosts with fast com-

puting power [Katal etc., 2023]. 

Virtual machines (VMs) are a type of computing 

resource that cloud providers utilize to deliver compu-

ting resources to users. To increase the general effec-

tiveness of cloud computing, effective task scheduling 

is needed when several users make task requests for 

services from the cloud. Efficient task scheduling al-

lows the optimal resource allocation between the re-

quested tasks over a limited amount of period enabling 
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the achievement of the desired degree of quality of ser-

vice (QoS) [Adhikari etc., 2019, Gawalil etc., 2018]. 

The primary categories of scheduling mechanisms 

used in cloud computing are workflow, static, cloud 

service, and dynamic scheduling [Alsaidy etc., 2022]. 

The difficulty of the process allows for the classifica-

tion of scheduling methods as heuristic, meta-heuristic, 

and hybrid task scheduling techniques. Static schedul-

ing employs heuristic approaches such as minimum 

execution time (MET), minimum completion time 

(MCT), shortest job to fastest processor (SJFP), long-

est job to fastest processor (LJFP), Min-Min, and 

Max-Min [Abd etc., 2019, Mishra etc., 2020]. In a 

cloud environment, it can be challenging to schedule 

tasks and allocate resources in the best possible order 

and with the least amount of delay to increase system 

presentation. The complexities of the cloud, real-time 

task mapping to virtual machines, and virtual machine 

mapping to the host machine make task scheduling in 

cloud computing an NP-Hard problem [Yadav etc., 

2023, Golchi etc., 2019]. 

Meta-heuristic algorithms have recently captured 

the interest of researchers due to their capacity to solve 

large-scale issues efficiently. For NP-Hard problems, 

these algorithms can efficiently search a wide area of 

the solution space for a solution that is close to optimal 

[Abdullahi etc., 2023]. Meta-heuristic algorithms like 

the genetic algorithm (GA) [Keshanchi et at., 2017], 

ant colony optimization (ACO) [Mahato etc., 2017], 

particle swarm optimization (PSO) [Mansouri etc., 

2019, Kumar etc., 2018], discrete symbiotic organism 

search (DSOS) [Abdullahi etc., 2016], and gravita-

tional search algorithm (GSA) [Chaudhary etc., 2018] 

have recently been used to solve task scheduling issues 

[Agarwal etc., 2021, Wei 2020]. However, metaheu-

ristic algorithms possess two major shortcomings: The 

first is that they are computationally intensive and can 

get stuck in local optimum states, particularly in large 

solution spaces. According to Konjaang and Xu Rama-

moorthy et al [Konjaang etc., 2021, Ramamoorthy etc., 

2021], an inequity among local and global search strat-

egies may origin convergence to occur too early.  

Hybrid meta-heuristic algorithms were employed 

by the researchers to achieve improved performance. 

Examples of this hybridization include the hybridized 

whale optimization method [Strumberger etc., 2019], 

firefly and PSO [1, 11], Q-learning and PSO [Jena etc., 

2022], as well as firefly and simulated annealing [Fan-

ian etc., 2018]. The contribution of the work is out-

lined as: 

• Energy-efficient VMs are crucial for cost-

effective, elastic computing in cloud data centres, but 

their computational complexity can limit their usabil-

ity in dynamic environments and hinder real-time re-

sponsiveness and scalability. 

• A proposed approach focuses on job de-

pendencies and task execution times to shorten make-

span, consume less energy, and balance the load on 

available resources.  

• Tasks are assigned VMs based on work-

flow tasks, with tasks with longer execution times han-

dled first. Queues are maintained based on job intensi-

ties, and tasks are stored in queues using additional in-

formation.  

• The enhanced Multi-Tactic Harris Hawks 

Optimization (MTHHO) algorithm is used to optimize 

scheduling issues. The algorithm uses Sobol se-

quences, elite opposition-based learning, and the 

Gaussian walk learning technique to improve the pop-

ulation's variety, adaptability, and energy updating. 

The rest of the manuscript is organized as given. 

An introduction is given in Section 1, related works 

are presented in Section 2, and effective task schedul-

ing in cloud computing using queuing and multi-tac-

tic Harris Hawks Optimisation modelling is covered 

in Section 3. Sections 4 as well as 5 provide the 

model results, and the conclusion correspondingly. 

2. Related Works 

Several studies are involved on the topic of cloud 

computing, including scheduling, load balancing, and 

resource provisioning. Numerous problems with cloud 

computing have captured the attention and concern of 

researchers. Resource management, load balancing, 

cloud migration, privacy and security, energy con-

sumption, availability and scalability, interoperability, 

and compatibility are a few of these significant con-

cerns. These challenges are strongly influenced by in-

vestigating effective task scheduling. The fundamental 

to task scheduling in cloud computing is to identify the 

most optimal mapping connection among tasks and 

virtual machines depending on the objectives of users 

and cloud systems. One of the main ways to deal with 

this issue is to find a more effective algorithm to sup-

port job scheduling, such as a single-objective optimi-

zation algorithm or a multi-objective optimization al-

gorithm. The following section discusses some of the 

utmost recent task-scheduling approaches. 
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Kaur, etc., outlined the major research require-

ments for load balancing optimization in the prior 

works that must be filled to address the load balancing 

problem in cloud environments. To maximize the use 

of VMs with uniform load distribution, a framework 

for resource provisioning and a combination method 

for load balancing has been created in the current work. 

The suggested system is based on the fusion of heuris-

tic techniques with meta-heuristic algorithms to 

achieve the greatest efficiency in making span and cost. 

For the HDD-PLB system, two hybrid methods have 

been proposed: the Hybrid Heterogeneous Earliest 

Finish Time (HEFT) Heuristic with ACO (HHA) and 

the Hybrid Predict Earliest Finish Time (PEFT) Heu-

ristic with ACO meta-heuristic (HPA). The two load-

balancing approaches have been analysed and con-

trasted for the suggested HDD-PLB system to deter-

mine which is superior. However, the suggested frame-

work is based on financial restraints, limiting the exe-

cution of workflow tasks that exceed deadlines in 

terms of total cost. The normal time and cost findings 

of the 100 repetitions were not measured for this re-

search. 

Kruekaew, etc., suggested the MOABCQ 

method as a standalone task scheduling method for 

cloud computing to tackle workload balancing prob-

lems with a Multi-objective task scheduling optimiza-

tion depending on the Artificial Bee Colony Algorithm 

(ABC) with a Q-learning algorithm, which is a rein-

forcement learning method that assists the ABC pro-

cess work more rapidly. The proposed solution ad-

dresses the limitations of simultaneous concerns by 

maximizing VM throughput, optimizing scheduling 

and resourceconsumpti on, and establishing load bal-

ancing among VMs according to make span, cost, and 

resource utilization. The efficiency study of the sug-

gested approach was contrasted utilizing CloudSim 

with the load balancing and scheduling methods cur-

rently in use: Max-Min, FCFS, HABC_LJF, Q-learn-

ing, MOPSO, and MOCS in three datasets: Random, 

Google Cloud Jobs (GoCJ), and Synthetic workload. 

According to the findings, MOABCQ-based algo-

rithms beat other algorithms on account of lowering 

makespan, cost, degree of imbalance, boosting 

throughput, and utilizing resources regularly. However, 

it cannot ensure that the MOABCQ_LJF method is 

best, and also not all test datasets can be used to opti-

mize the system's performance. 

Velliangiri etc. proposed a Hybrid Electro Search 

with a Genetic Algorithm (HESGA) to improve work 

scheduling performance by accounting for aspects 

such as makespan, balance of load, utilisation of re-

sources, and multi-cloud costs. The proposed method 

integrates the advantages of genetic and electro-search 

algorithms. The Electro search method generates the 

finest global optimum results, while the GA generates 

the finest local optimal results. The suggested tech-

nique outperforms current scheduling methods as the 

Hybrid Particle Swarm Optimization Genetic tech-

nique (HPSOGA), GA, ES, and ACO. However, there 

are no guarantees that the algorithm will find the glob-

ally best solution or that it will always lead to optimal 

resource use, which is essential for cloud computing to 

be cost-effective. 

Rajakumari, etc., proposed the Fuzzy Based Ant 

Colony Optimization Scheduling approach, however, 

is used in cloud computing to address task scheduling 

issues like optimal task scheduling presentation results. 

First, by suggesting a Dynamic Weighted Round-

Robin method, work scheduling performance in the 

cloud is enhanced. The performance of work schedul-

ing is enhanced by the suggested DWRR algorithm by 

taking into account resource competence, task priority, 

and length. Next, a hybrid particle swarm parallel ant 

colony optimization heuristic approach is suggested to 

address the task execution delay issue in DWRR-based 

task scheduling. Finally, HPSPACO develops a fuzzy 

logic system that enhances job scheduling in the cloud 

system. For the inertia weight updates of the PSO and 

pheromone trails updating of the PACO, a fuzzy tech-

nique is suggested. To optimize work scheduling, the 

proposed Fuzzy HPSPACO on cloud computing re-

duces implementation and waiting times boosts sys-

tem throughput and maximizes resource usage. Con-

versely, the CF-ACO algorithm is a complex algo-

rithm with multiple elements, including fuzzy logic 

and ant colony optimization, which can result in fun-

damental processing overhead and difficulties in find-

ing optimal solutions in real-time or large-scale cloud 

systems. 

Saxena, D., etc., proposed a unique secure and 

multi-objective virtual machine placement (SM-VMP) 

model using a successful VM migration to tackle the 

problems of resource waste, excessive usage of power, 

higher inter-communication costs, and security 

breaches. The suggested approach emphasizes the safe 

and quick operation of user applications by minimiz-

ing inter-communication latency and enabling an en-

ergy-efficient allocation of physical resources 

across VMs. The VMP is implemented using the sug-

gested Whale Optimisation Genetic Algorithm 

(WOGA), which is motivated by non-dominated 



DOI: 10.6977/IJoSI.202412_8(4).0005 

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024) 

70 

 

sorting-based genetic algorithms and whale evolution-

ary optimization. The results of the assessment for 

static and dynamic VMP as well as contrasting it using 

contemporary advanced revealed a considerable drop 

in shared servers, intercommunication costs, power 

consumption, and processing period up to 28.81%, 

25.7%, 35.9%, and 82.21%, correspondingly. Re-

source utilization also improved up to 30.21%. How-

ever, multi-objective optimization issues in cloud data 

centres can be computationally complex, time-inten-

sive, and difficult to solve. 

3. Proposed Methodology 

The allocation of energy-efficient virtual ma-

chines (VMs) is crucial for cost-effective and elastic 

computing in cloud data centres. However, the compu-

tational complexity of existing work, particularly in 

large-scale data centres and complex optimization ob-

jectives, can limit the framework's usability in dy-

namic, resource-intensive environments and impair its 

real-time responsiveness and scalability. Multi-objec-

tive optimization can be computationally intensive and 

time-consuming. It is crucial to understand how com-

putational complexity impacts the usability of the sys-

tems. High computational complexity can cause de-

lays in VM allocation, impacting cloud service respon-

siveness and performance. As data centres scale, man-

aging resource complexity becomes more complex, re-

quiring clear management strategies to ensure system 

effectiveness at larger scales. Complex algorithms 

may require more computational power, potentially 

offsetting energy savings achieved through efficient 

VM allocation. Implementing sophisticated algo-

rithms can pose challenges, but clear guidelines and 

understanding can help ensure smooth deployment 

and operation. The suggested approach focuses on job 

dependencies and task execution times to shorten 

make-span, consume less energy, and balance the load 

on available resources. To preserve a balanced load on 

the resources, VMs are assigned tasks depending on 

the necessities of the workflow tasks. The suggested 

method scans the workflow tasks and establishes 

thresholds for the tasks' level and duration. When tasks 

are being executed, the threshold values are employed 

to handle them based on various priorities.  

Tasks with higher dependencies generate system 

bottlenecks and extended execution durations. To 

shorten execution time, tasks with longer execution 

times are handled first, requiring high-priority pro-

cessing and allocating VMs with powerful processing 

capabilities. The algorithm also prioritizes tasks with 

lengthy execution times, setting thresholds for depend-

encies and duration. This shortens execution time and 

reduces energy consumption by effectively utilizing 

resources. The suggested approach then employs 

queues based on the job intensities, maintaining dis-

tinct queues for CPU-intensive tasks and tasks with 

higher dependents. It takes less time to discover the 

right VMs during the VM allocation process when 

tasks of different intensities are placed in distinct 

queues. Tasks are stored in queues using additional in-

formation about them, such as their intensities, arrival 

times, and deadlines. The following step is to generate 

appropriate VMs for the tasks following the classifica-

tion of tasks into various queues. Historical scheduling 

Logs HSLs are employed for this objective. The HSLs 

are updated appropriately and a novel VM is generated 

with the resources required to complete the task if 

there is no matching record in the HSLs. The sug-

gested algorithm optimizes the scheduling issue using 

the enhanced Multi-Tactic Harris Hawks Optimization 

(MTHHO) algorithm. Scheduling with MTHHO be-

gins following the pre-processing step. An enhanced 

MTHHO algorithm is suggested to make up for the tra-

ditional HHO process's low convergence accuracy, 

slower degree of convergence, and easy tendency to 

prey to the illusion of local optima. To improve the 

population's variety, Sobol sequences are first utilized 

to start the population. The next step to raise the adapt-

ability and the standard of the solution sets, the elite 

opposition-based learning technique is used. Addition-

ally, the original algorithm's energy updating tech-

nique has been improved to increase the process's ca-

pability to explore as well as exploit in a nonlinear up-

date way. To prevent the process from being stuck and 

settling into a local optimum, the Gaussian walk learn-

ing technique is finally employed. The suggested 

framework for task scheduling utilizing the enhanced 

MTHHO process is shown in Fig 1. 

The proposed approach to task scheduling opti-

mizes resource utilization, reduces make-span, and 

saves energy by using energy-efficient virtual ma-

chines (VMs) and optimizing scheduling. It considers 

job dependencies and task execution times, maximiz-

ing resource allocation, reducing idle times, and mini-

mizing make-span. The approach prioritizes tasks 

based on dependencies and execution times, ensuring 

critical tasks are completed promptly. It also balances 

resource loads across the data centre, preventing 

overutilization or underutilization, and improving the 

stability and reliability of the cloud infrastructure. The 
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enhanced MTHHO algorithm, using advanced tech-

niques like Sobol sequences and elite opposition-

based learning, enhances scheduling accuracy, leading 

to better convergence on optimal solutions and avoid-

ing common pitfalls like local optima. Overall, this ap-

proach significantly improves task scheduling effi-

ciency and reduces energy consumption. 

 

Fig 1. The Proposed Framework for Task Scheduling 

3.1 Materials and Approaches 

The proposed method is explained further in this 

part of the article. The process focuses on load balance, 

makespan, and energy consumption. The process is 

separated into dual phases: MTHHO-based optimiza-

tion and preprocessing. The process and cloud frame-

work are covered initially, trailed by the information 

of every stage. 

3.2 Workflow and Cloud Architecture 

Workflow programmes are made up of tasks that 

have reliance, such as implementation and data reli-

ance. The tasks in the previous examples have a par-

ent-child relationship. When the execution of each 

parent's job has finished, the child's task can begin. In 

the latter scenario, the tasks exchange data, meaning 

that the result produced by one job is used as the input 

for another. It is challenging for a scheduler to effi-

ciently schedule resources for workflow programs be-

cause of these dependencies. A directed acyclic graph 

(DAG), such as 𝐷 (𝑉, 𝐸), is used to represent work-

flow activities. In this graph, 𝐸  stands for the edges 

while 𝑉 stands for the vertices. VMs, or virtualized re-

sources, are the building blocks of cloud computing. A 

scheduling process's objective is to assign 𝑅𝑖  to 𝑊𝑗 , 

where 𝑊𝑗 is the workflow applica-

tion  (𝑊1,𝑊2,𝑊3, . . . ,𝑊𝑚  and 𝑅𝑖  is the 𝑖 th resource 

from a pool of VMs (𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3, . . . , 𝑉𝑀𝑛). The 

objective is to reduce energy usage and 

implementation period while maintaining a balanced 

load on the available resources. Processing, memory, 

storage, bandwidth, and other capacities have been 

pre-allocated for the resources. Equation (1) illustrates 

how the number of processing elements (PEs) and 

MIPs of each PE are used to calculate the processing 

capacity (𝐶𝑖) of a resource 𝑉𝑀𝑖.  

𝐶𝑖 = (𝑃𝐸×𝑀𝐼𝑃𝑆𝑖)         (1) 

Equation (2) is used to determine the capacity of 

𝑛 resources, or virtual machines. 

𝐶 = ∑ 𝐶𝑖
𝑛
𝑖=1               (2) 

Every VM has a resource utilisation at any given 

period, which is called the VM load. Equation (3) is 

used to compute the load, where 𝑇𝐿 the total length of 

tasks that 𝑉𝑀𝑖 is processing and Ci is  𝑉𝑀𝑖 's capacity. 

𝐿𝑣𝑚𝑖 =
𝑇𝐿

𝐶𝑖
                (3) 

Equation (4) is utilised to determine each VM's 

load 𝐿. 

𝐿 = ∑ 𝐿𝑣𝑚𝑖
𝑛
𝑖=1             (4) 

Equation (5) illustrates how load balancing is cal-

culated as the load across various cloud environment 

nodes. 

𝜎 = √
∑ (𝐿𝑣𝑚𝑖−�̅�)

2𝑛
𝑖=1

𝑛
          (5) 

where �̅� is the average load across all VMs, n is 

the amount of VMs, and 𝐿𝑣𝑚𝑖  is the load of 𝑉𝑀𝑖. The 

way resources are used has a big impact on how much 

energy cloud computing uses. Equation (6) can be 

used to compute the utilisation. 

𝑈 = 𝛼
∑ 𝑐𝑖
𝑛
𝑖=1

𝐶
+ 𝛽

∑ 𝑚𝑖
𝑛
𝑖=1

𝑀
            (6) 

where 𝑛 is the number of VMs running on host ℎ, 

and 𝑐𝑖 , 𝑚𝑖  denotes the computing and memory as-

signed to 𝑉𝑀𝑖. In Eq. (6), 𝐶 and 𝑀 are the total pro-

cessing ability and memory of the host, and 𝛼 and 𝛽 

are the weight factors of every resource. 

Equation (7) can be used to compute the energy 

consumption, with 𝒌 standing for the functioning en-

ergy consumption, or idle mode. 𝑼   is the host 

Task 1 

Task  2 

 Task  3 

. 

. 

. 

Task  n 
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resource utilisation determined by Equation (6), and 

𝑬𝒎𝒂𝒙 denotes the energy consumption during the pro-

cessors' peak utilisation. 

𝐸𝑐 = 𝐸𝑖𝑑𝑙𝑒 + (𝐸𝑚𝑎𝑥 − 𝐸𝑖𝑑𝑙𝑒) × 𝑈       (7) 

Data processing may be required for workflow 

tasks. The workflow's total completion time accounts 

for both processing time and time spent acquiring the 

necessary data. The completion time of task 𝑡𝑖  is cal-

culated using Equation (8). 

𝑇𝑖𝑚𝑒(𝑡𝑖) = 𝑇𝑖𝑚𝑒 ((𝑇𝑟𝑎𝑛𝑠𝑡𝑖 , 𝑡𝑗) +

𝑇𝑖𝑚𝑒𝐸(𝑡𝑖 , 𝑉𝑀𝑘))    (8) 

The time required to transmit data from task 𝑡𝑖 to 

task 𝑡𝑗  is denoted by (𝑇𝑟𝑎𝑛𝑠𝑡𝑖 , 𝑡𝑗)  in Equation (8), 

while the execution time of 𝑡𝑖 on 𝑉𝑀𝑘 is represented 

by 𝑇𝑖𝑚𝑒𝐸(𝑡𝑖 , 𝑉𝑀𝑘). Equations (9) and (10) are used to 

determine the two parameters, respectively. 

𝑇𝑟𝑎𝑛𝑠(𝑡𝑖, 𝑡𝑗) =
𝑠𝑖𝑧𝑒𝑜𝑓(𝑡𝑖,𝑡𝑗)

𝛽(𝑉𝑀𝑘,𝑉𝑀𝑚)
        (9) 

The quantity of data that task 𝑡𝑖 transfers to task 

𝑡𝑗 is represented by 𝑠𝑖𝑧𝑒𝑜𝑓(𝑡𝑖 , 𝑡𝑗) in Equation (9), and 

the bandwidth consumed by 𝑉𝑀𝑘  and 𝑉𝑀𝑚  is repre-

sented by 𝛽(𝑉𝑀𝑘 , 𝑉𝑀𝑚). The cost of transmission is 

disregarded if both virtual machines are placed in the 

same data centre. 

𝑇𝐸 =
𝑙𝑖

𝐶𝑚𝑗
                 (10) 

where 𝐶𝑚𝑗
  is the processing capability of𝑉𝑀𝑗 , 

which was determined using Equation (1), and 𝑙𝑖 is the 

length of job 𝑖. A workflow's makespan is the entire 

period it gains to complete every task. Equation (11), 

where 𝑀𝑆 is the makespan and 𝐹𝑇 is the task's com-

pleting time, can be used to compute the makespan. 

𝑀𝑆 = 𝐹𝑇𝑖=1
𝑛 [𝑡𝑎𝑠𝑘𝑖𝑡𝑖𝑚𝑒]          (11) 

Energy-efficient virtual machines (VMs) signifi-

cantly reduce operational costs by reducing power 

consumption in data centres, a crucial factor in a com-

petitive market. They also support the elastic nature of 

cloud computing, allowing data centres to dynamically 

scale resources based on demand. This elasticity en-

sures optimal resource utilization without unnecessary 

energy expenditure. Additionally, the proposed 

method simplifies the allocation process by consider-

ing job dependencies and task execution times, mak-

ing it more manageable and efficient even in complex 

scenarios. 

3.3 Harris Hawks Optimization (HHO)  

The HHO process is a mathematical explanation 

of the Harris hawk's technique for catching prey under 

various circumstances. Each iteration's best answer is 

regarded as the prey, while individual Harris hawks 

form candidate solutions. The process is allocated into 

two primary phases: exploration and exploitation. The 

amount of the prey's escape energy determines when 

to switch between the two phases. Below is a descrip-

tion of the original Harris Hawks optimisation algo-

rithm. 

3.3.1 Exploration Phase  

The position data of the Harris hawk population 

largely determines the global search phase, and its up-

date methodology is as follows: 

𝑍(𝑡 + 1) =

{
𝑍𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑍𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑍(𝑡)|                                 𝑞 ≥ 0.5

(𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))              𝑞 < 0.5
     

        (12) 

In this case,  𝑟1 − 𝑟4  and 𝑞  are casually created 

among (0,1), being transformed every iteration; 

𝑍(𝑡 + 1) stands for the position of the hawks in the it-

eration 𝑡 + 1 ; 𝑍𝑝𝑟𝑒𝑦(𝑡)  signifies the location of the 

prey; 𝑍(𝑡)  signifies the position of the hawks in the 

present generation 𝑡 ; 𝑈𝐵  and 𝐿𝐵  are the upper and 

lower bounds of the population, accordingly; 

𝑍𝑟𝑎𝑛𝑑(𝑡)  indicates a casually nominated hawk from 

the present population; and 𝑍𝑚(𝑡) stands for the mean 

of individuals in the current population, which comes 

from Eq.(13): 

𝑍𝑚(𝑡) =
1

𝑛
∑ 𝑍𝑘(𝑡)
𝑛
𝑘=1                    (13) 

where 𝑍𝑘(𝑡) represents the location of hawk 𝑘 in 

the reiteration 𝑡 as well as 𝑛 represents the number of 

hawks. 
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3.3.2 Conversion from Exploration to Ex-

ploitation 

The following is the energy calculation that reg-

ulates the prey's outflow: 

𝐸𝑓 = 2𝐸𝑒𝑠𝑐0(1 − 𝑡 𝑇)⁄                    (14) 

Where 𝑇 is the maximum amount of repetitions, 

𝑡 is the number of repetitions that are currently in pro-

gress, and the rate of 𝐸𝑒𝑠𝑐0 is an arbitrary number be-

tween −1  and 1  that represents the energy's starting 

state. The global exploration phase is represented by 

the Harris hawks searching for the prey in various 

places while the escape energy |𝐸𝑒𝑠𝑐|  ≥  1, and the lo-

cal exploitation phase is represented by the Harris 

hawks searching the nearby solutions when |𝐸𝑒𝑠𝑐|  <

 1. 

3.3.3 Exploitation Phase 

Based on the findings of the previous stages' ex-

ploration, the Harris hawk will besiege the intended 

prey in this phase while it attempts to get away from 

the chase. For this stage of the simulation, four poten-

tial ways are suggested based on the actions of the Har-

ris's hawk and its prey. 𝐸𝑒𝑠𝑐   simulates both the hard 

and soft besiege of Harris's hawk. The parameter 𝑟 in-

dicates whether or not the prey successfully escapes. 

3.3.4 Soft Besiege 

The prey attempts to get away from the hunt 

when |𝐸𝑒𝑠𝑐| ≥  0.5  and 𝑟 ≥  0.5 , at which point the 

Harris hawk uses a soft besiege to slowly deplete the 

prey's energy. The following is a model of the behav-

iour: 

𝑍(𝑡 + 1) = ∆𝑍(𝑡) − 𝐸𝑒𝑠𝑐|𝐼𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍(𝑡)|        (15) 

  ∆𝑍(𝑡) = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍(𝑡)         (16) 

where 𝐼  is added to resemble the movement of 

the prey and 𝑟5  is a randomly generated number be-

tween 0 and 1, with a random variation in its value for 

each iteration. 

3.3.5 Hard Besiege 

The Harris hawk uses Equation (17) to update its 

current position and launches a hard besiege attack on 

prey when it has insufficient energy to get away, spe-

cifically when |𝐸𝑒𝑠𝑐| < 0.5  and 𝑟 > 0.5. 

𝑍(𝑡 + 1) =  𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝐸𝑒𝑠𝑐|∆𝑍(𝑡)|               (17) 

3.3.6 Soft Besiege Using Increasingly Fast 

Dives 

The prey has sufficient energy to outflow the hunt 

when |𝐸𝑒𝑠𝑐| > 0.5  and  𝑟 < 0.5 . Harris hawks will 

modify their positions by Equation (18): 

𝑋 = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝐸𝑒𝑠𝑐|𝐼𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍(𝑡)|             (18) 

𝑌 = 𝑋 + 𝑆 × 𝐿𝐹(𝐷)                                            (19) 

where 𝐷 is the problem dimension, 𝑆 is a random 

vector of size 1 × 𝐷, and 𝐿𝐹 is the levy flight function, 

which can be defined as in Eqn (20): 

{
 
 

 
 𝐿𝐹(𝑧) = 0.01 ×

𝑢×𝜎

|𝑣|

1
𝛽

𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1
2 )
)

1

𝛽               (20) 

where 𝛽 is the default constant, set at 1.5, and 𝑢 

and 𝑣  are random numbers within the interval (0,1) . 

Therefore, Equation (21) can be used to carry out the 

last plan for apprising the Hawks' positions over the 

soft siege phase: 

𝑍(𝑡 + 1) = {
𝑋, 𝑖𝑓𝐹(𝑋) < 𝐹(𝑍(𝑡))

𝑌, 𝑖𝑓𝐹(𝑌) < 𝐹(𝑍(𝑡))
                (21) 

where 𝑋  and 𝑌  are gained using Equations (18) 

and (19), correspondingly. 

3.3.7 Hard Besiege Using Increasingly 

Fast Dives 

The prey lacks the energy to accomplish an out-

flow when |𝐸𝑒𝑠𝑐| < 0.5  and 𝑟 < 0.5 . In these cases, 

the following tactic is intended to be used: 
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𝑍(𝑡 + 1) = {
𝑋, 𝑖𝑓𝐹(𝑋) < 𝐹(𝑍(𝑡))

𝑌, 𝑖𝑓𝐹(𝑌) < 𝐹(𝑍(𝑡))
              (22) 

𝑋 = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝐸𝑒𝑠𝑐|𝐼𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍𝑚(𝑡)|       (23) 

𝑌 = 𝑋 + 𝑆 × 𝐿𝐹(𝐷)                        (24) 

where 𝑍𝑚(𝑡) is gained using Equation (13) 

3.3.8 Main Steps of HHO 

Algorithm 1 depicts the important phases of the 

overall HHO algorithm. 

Algorithm 1 Principal phases of the HHO process 

Input: Population size 𝑁 and the maximum number of 

iterations 𝑇 

1: Start the population 

2: while 𝑡 <  𝑇 do 

3: Compute the suitability of every solution and get the 

best individual 

4: for 𝑖 = 1:𝑁 do 

5: Modify the escape energy 𝐸𝑒𝑠𝑐  by Eq. (14) 

6: if |𝐸𝑒𝑠𝑐|  ≥  1 then 

7: Modify the position by Eq. (12) 

8: else if then |𝐸𝑒𝑠𝑐| <  1 

9: if |𝐸𝑒𝑠𝑐 | ≥ 0.5 and 𝑟 ≥  0.5 then 

10: Modify the position by Eq. (15) 

11: else if then |𝐸𝑒𝑠𝑐 | < 0.5 and 𝑟 ≥ 0.5 

12: Modify the position by Eq. (17) 

13: else if then |𝐸𝑒𝑠𝑐 | ≥ 0.5 and 𝑟 <  0.5 

14: Modify the position by Eq. (21) 

15: else if then|𝐸𝑒𝑠𝑐 | < 0.5 and 𝑟 <  0.5 

16: Modify the position by Eq. (22) 

17: end if 

18: end if 

19: end for 

20: 𝑡 = 𝑡 +  1 

21: end while 

22: return 𝑍𝑝𝑟𝑒𝑦 

3.4 Enhanced Multi-Tactic Harris Hawks 

Optimization (MTHHO) 

The HHO process is effective for local develop-

ment since it includes several development modes and 

alternates between them, but it also has the drawback 

of being vulnerable to the local optimum issue. To ad-

dress this shortcoming, four enhancement techniques 

are employed in this article that enhance the initial al-

gorithm. The MTHHO algorithm is a new approach to 

task scheduling optimization that overcomes the 

limitations of traditional HHO. It uses sobol sequences 

to initialize the population, ensuring uniform and com-

prehensive coverage of the search space. This diversity 

is crucial for exploring a wide range of potential solu-

tions and avoiding premature convergence. Elite op-

position-based learning improves the algorithm's abil-

ity to escape local optima by considering both current 

best solutions and their opposites, maintaining a bal-

ance between exploration and exploitation. Addition-

ally, the algorithm includes refined energy updating 

mechanisms that better simulate the energy dynamics 

of hawks in nature, enhancing convergence accuracy 

and efficiency.  This algorithm also employs Gaussian 

Walk Learning (GWL) to enhance population diversity 

and avoid local optima by initially using larger disrup-

tions that rapidly decrease in later stages, thereby bal-

ancing algorithm creation and searchability. 

3.4.1 Populations for Sobol Sequence Ini-

tialization 

The speed and precision of the intelligent algo-

rithm's convergence are significantly influenced by the 

primitive solution's distribution within the solution 

space. Randomization is used in the basic HHO 

method to create the initialised population. Neverthe-

less, the individuals produced in this manner are not 

uniformly dispersed around the exploration space, 

which consequently impacts the algorithm's accuracy 

and convergence rate. In contrast to the random se-

quence, the even distribution of points in space is a 

characteristic of the probabilistic low-difference Sobol 

sequence. The real population produced by the Sobol 

sequence can be given as follows: 

𝑍𝑖 = 𝐿𝑏 + 𝑆𝑛 × (𝑈𝑏 − 𝐿𝑏)            (25) 

where 𝑆𝑛  is the random number produced by the 

Sobol sequence, where 𝑆𝑛 ∈ [0, 1], and 𝐿𝑏 and 𝑈𝑏 are 

the exploration space's lower and upper limits, accord-

ingly. 

The original population space distribution is 

compared between the random initialization and the 

Sobol sequence initialization population spaces in Fig 

2, assuming that the population size is 100, the search 

space is two-dimensional, and the upper and lower 

limits are 1 and 0, correspondingly. 
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Fig 2.  Comparison of Sobol and random population genera-

tion 

The real population produced by the Sobol se-

quence is further evenly distributed, as seen in Fig 2, 

which allows the optimization process to conduct a su-

perior global exploration in the exploration space. This 

increases the population's diversity and accelerates the 

algorithm's rate of convergence. 

3.4.2 Elite Opposition-Based Learning 

Opposition-based learning (OBL) is a successful 

method of intelligent computing developed by 

Tizhoosh in 2005. This technique has been used re-

cently to enhance several algorithms and has shown 

excellent optimization outcomes. Considering an in-

stance where a feasible response in d-dimensional 

search space is 𝑍 =  (𝑧1, 𝑧2,· · ·, 𝑧𝑑)(𝑧𝑗  ∈  [𝑎𝑗 , 𝑏𝑗  ]), 

then the definition of its opposition-based solution is 

�̅� =  (𝑧1̅, 𝑧2̅,· · ·,  𝑧𝑑̅̅ ̅̅   ) , where 𝑧�̅� =  𝑟(𝑎𝑗 + 𝑏𝑗)  − 𝑧𝑗 , 

𝑟 is the uniform distribution coefficient between [0, 1]. 

The inverse solution developed by the opposi-

tion-based learning technique does not always search 

for the global optimal solution simpler than the exist-

ing exploration space. Elite opposition-based learning 

(EOBL) is suggested as a solution to this issue. Con-

sidering that the elite individual represents the extreme 

of the current population in the search space  𝑍𝑒  =

 (𝑧1
𝑒 , 𝑧2

𝑒 ,· · ·, 𝑧𝑑
𝑒  ) , then its inverse solution 𝑍𝑒̅̅ ̅  =

 (𝑧1
𝑒̅̅ ̅, 𝑧2

𝑒̅̅ ̅,· · ·, 𝑧𝑑
𝑒̅̅ ̅ ) can be stated as follows: 

𝑧𝑗
𝑒̅̅ ̅ =  𝑘 ∙ (𝑎𝑗 + 𝑏𝑗)  − 𝑧𝑗

𝑒        (26) 

where 𝑎𝑗 =  𝑚𝑖𝑛(𝑧𝑗
𝑒), 𝑏𝑗  =  𝑚𝑎𝑥(𝑧𝑗

𝑒), 𝑘  is a 

random number inside [0, 1] , and 𝑧𝑗
𝑒  ∈  [𝑎𝑗 , 𝑏𝑗  ].  It 

also has a dynamic border with upper and lower limits, 

respectively, represented by 𝑏𝑗  and 𝑎𝑗 . It is advanta-

geous for the produced inverse solution to slowly de-

crease the search space and accelerate the algorithm's 

convergence by substituting a dynamic boundary for 

the fixed boundary. The method used to reset the value 

is as follows to prevent the elite inverse solution from 

jumping beyond the boundary and losing its viability: 

𝑧𝑖
𝑒̅̅ ̅ = 𝑟𝑎𝑛𝑑(𝑎𝑗  , 𝑏𝑗)            (27) 

3.4.3 Optimisation of Escape Energy Up-

date 

The energy factor 𝐸𝑒𝑠𝑐 is used by a Harris hawk 

in the basic HHO to control the algorithm's shift from 

the global search stage to the local search stage. Nev-

ertheless, as Eq. (14) illustrates, a linear update is used 

to lower its energy factor 𝐸𝑒𝑠𝑐  from 2 𝑡𝑜 1, this, in the 

latter part of the cycle, results in locking it in a local 

optimum. When the process advances to the latter 

stage, a novel, upgraded form of the energy factor is 

utilized to address the drawback of just local searching: 

𝐸𝑒𝑠𝑐 = {
cos (𝜋 × (𝑡 𝑇 + 1 2) + 2), 𝑡 ≤ 𝑇 2⁄⁄⁄

cos (𝜋 × (𝑡 𝑇 − 1 2 )1 3⁄ ), 𝑡 > 𝑇 2⁄⁄⁄
     (28) 

𝐸𝑒𝑠𝑐1 = 𝐸𝑒𝑠𝑐 × (2 × 𝑟𝑎𝑛𝑑 − 1)               (29) 

where 𝑟 is the random number inside [0, 1], 𝑇 is 

the maximum number of iterations, and 𝑡 is the num-

ber of iterations that are currently being done. 

As shown in Fig 3, the algorithm's global search 

capability is controlled by a fast deceleration rate early 

in the iteration. The lowering rate reduces down in the 

middle of the iteration to equilibrium the capabilities 

of local exploitation and global exploration. Later in 

the iteration, the local search picks up speed and its 

value decreases quickly. Fig 4 shows that 𝐸𝑒𝑠𝑐1  has 

changing energy parameters all over the recursive pro-

cedure and has the capability of both global and local 

searching, with global exploration taking place pri-

marily in the initial phase and more local exploitation 

taking place later while still maintaining the potential 

of global exploration. 
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Fig 3. Recurrent alteration graph of Eesc. 

 

Fig 4. Recurrent alteration graph of Eesc1. 

3.4.4 Gaussian Walk Learning 

A traditional stochastic walk technique with good 

exploitation potential is Gaussian walk learning 

(GWL). Therefore, this research employs this method 

to modify population members to improve the popula-

tion's diversity and assist it in escaping the local opti-

mum trap. Equation (30) illustrates the Gaussian walk 

learning model: 

𝑍(𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠(𝑍(𝑡), 𝜏)                 (30) 

𝜏 = cos(𝜋 2 × (𝑡 𝑇⁄ )2) × (𝑍(𝑡) − 𝑍𝑟⁄ (𝑡))          (31) 

where the unidentified individual's position 

among the generation population 𝑡 is shown by 𝑍(𝑡), 

the individual in the generation population 𝑡 is showed 

by 𝑍(𝑡) , and the Gaussian distribution with 𝑍(𝑡)  as 

the expectation and 𝜏 as the standard deviation is rep-

resented by 𝐺𝑎𝑢𝑠𝑠(𝑍(𝑡), 𝜏) . The function 

cos (𝜋 2 × (𝑡 𝑇⁄ )2) ⁄ modifies the stage dimension of 

Gaussian walk learning. Fig 5 illustrates this in image 

form. To improve the creation of algorithms and bal-

ance searchability, the disruption used during the be-

ginning stages is larger and rapidly decreases in the 

latter phases. 

 

Fig 5. Wandering length of steps modification graph 

3.4.5 MTHHO Algorithm 

In overview, Algorithm 2 depicts the major stages 

of the enhanced MTHHO algorithm. 

Algorithm 2 Principal phases of the MTHHO pro-

cess 

Input: Population size 𝑁 and the maximum number of 

iterations 𝑇 

1: Initialise the population by Eq. (25) 

2: while 𝑡 <  𝑇 do 

3: Determine the fitness of the original population and 

the people in its reverse population by generating the 

reverse population utilising the elite opposition-based 

learning process 

4: If the process is not moving forward, then 

5: Modify the location by Eq. (30). 

6: else 

7: for 𝑖 = 1:𝑁 do 

8: Modify the escape energy 𝐸𝑒𝑠𝑐  by Eq. (29) 

9: if |𝐸𝑒𝑠𝑐|  ≥  1 then 

10: Modify the position by Eq. (12) 

11: else if then |𝐸𝑒𝑠𝑐| <  1 

12: if |𝐸𝑒𝑠𝑐|  ≥  0.5 and 𝑟 ≥ 0.5 then 

13: Modify the position by Eq. (15) 

14: else if then |𝐸𝑒𝑠𝑐|  <  0.5 and 𝑟 ≥ 0.5 

15: Modify the position by Eq. (17) 

16: else if then |𝐸𝑒𝑠𝑐|  ≥  0.5 and 𝑟 < 0.5 

17: Modify the position by Eq. (21) 

18: else if then |𝐸𝑒𝑠𝑐|  <  0.5 and 𝑟 < 0.5 

19: Modify the position by Eq. (22) 

20: end if 
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21: end if 

22: end for 

23: end if 

24: 𝑡 = 𝑡 +  1 

25: end while 

26: return 𝑍𝑝𝑟𝑒𝑦 

3.5 Proposed Scheduling Algorithm 

The suggested approach aims to balance the im-

pact on resources and minimise makespan and energy 

consumption by focusing on task dependencies and 

execution times. To maintain a balanced load on the 

resources, VMs are assigned tasks based on the re-

quirements of the workflow tasks. Task assignment is 

a crucial aspect of a system, focusing on reducing bot-

tlenecks and improving overall efficiency. It involves 

assigning tasks based on their dependencies and exe-

cution times, with higher-priority tasks given priority. 

Tasks are categorized based on thresholds for task lev-

els and durations, ensuring timely handling of urgent 

tasks. The dynamic assignment process adjusts based 

on workload and resource availability, ensuring effi-

cient use of virtual machines (VMs).  The suggested 

method scans the workflow tasks and establishes 

thresholds for the tasks' depth and length, where depth 

and length are related to the tasks' levels and execution 

times, respectively. During task execution, the thresh-

old standards are utilized to handle tasks based on var-

ious significances. Longer implementation times and 

bottlenecks in the system are caused by tasks with ad-

ditional dependents. Likewise, to shorten the total ex-

ecution time, tasks that take longer to complete must 

be prioritised. High-priority jobs are handled by allo-

cating VMs with significant processing power to them. 

To prevent needless waiting for jobs at the same level, 

the suggested algorithm further looks for tasks with 

lengthy implementation periods and gives these tasks 

significance processing. Based on the input data, 

thresholds are established for the quantity of depend-

ents as well as the duration. By using resources more 

effectively, these processes shorten the implementa-

tion period, which also results in lower energy con-

sumption. Algorithm 3 illustrates the stages in the pro-

cess. 

Algorithm 3: Prevent bottleneck tasks 

Input: workflow 𝑤 

Output: Task queues according to length and depth 

Allocate thresholds 𝑑𝑡 for the depth of tasks and 𝑙𝑡 for 

the length of tasks 

for every task 𝑡 in the task set do 

   depth = number of levels reliant on 𝑡 
   length = execution time of 𝑡 
    if 𝑑𝑒𝑝𝑡ℎ >=  𝑑𝑡 then 

         transfer 𝑡 to the depth queue 

    end 

    if 𝑙𝑒𝑛𝑔𝑡ℎ >=  𝑙𝑡 then 

        transfer 𝑡 𝑡o length queue 

    end 

end 

Return queues 

 

Subsequently, the suggested algorithm employs 

queues based on task intensities; that is, distinct 

queues are kept for activities requiring a lot of CPU 

power and tasks with several dependencies. It takes 

less time to discover the right VMs during the VM al-

location process when workloads with varying inten-

sities are placed in distinct queues. The allocation pro-

cess is streamlined by using queues to organise tasks, 

sorting and prioritising them before being assigned to 

VMs, reducing computational complexity and improv-

ing overall system efficiency. Tasks are stored in 

queues in which task queues are organised based on 

intensities, arrival times, and deadlines, with different 

queues maintained for tasks of varying intensities. 

Each task in the queue is associated with additional 

metadata, such as its intensity, arrival time, and dead-

line, which optimises the scheduling process. The last 

stage is to build appropriate VMs for the jobs after 

grouping them into distinct queues. Historical Sched-

uling Logs (HSLs) were used to inform the queue 

management process, providing insights into past task 

execution patterns. If no matching records exist, new 

VMs are created to handle the tasks, allowing the sys-

tem to adapt to new or unexpected workloads. A novel 

VM is built using the resources essential to finish the 

task, and the HSLs are modernised if there isn't a 

matching record in the HSLs. Algorithms 4-6 illustrate 

the steps in the suggested algorithm. 
 

Algorithm 4: Construct the types of VMs 

Input: HSLs, task sets (from certain queues), 

Output: VMs (Types) 

𝑁 = number of tasks in a queue 

for (every task 𝑡 in 𝑁) do 

       calculate 𝑃(𝑇𝑡) (Eq. 32) 

       𝐻 =  𝑏𝑒𝑠𝑡 𝑛 𝑃(𝑇𝑡) 
end 

for (every 𝑙 in 𝐻) do 

       if (𝑡 identified in HSLs) then 

           assign 𝑉𝑀𝑗 based on the type of 𝑡 

           else 

                 Construct 𝑉𝑀() 
           end 
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           Allocate 𝑉𝑀𝑗 to task 𝑡 

       end 

end 

 
Algorithm 5: Construct Virtual Machines 

Input: Set of tasks 𝐿𝑡  from queues from algorithm 3, 

set of hosts 𝐿ℎ 

Output: Set of VMs 

for (every host ℎ in 𝐿ℎ) do 

      𝑢 = resource consumption of ℎ 

      if (host resources are accessible) then 

           Construct VM 

           Modernise HSLs 

      end 

      else 

           Turn on the new host 

           Construct VM 

           Modernise HSL 

      end 

end 

 

Algorithm 6: Task Scheduling 

Input: Set of tasks 𝐿𝑡 from queues from algorithm 3, 

set of VMs 𝑉𝑙 
Output: Schedule of tasks for VMs 

for (every task 𝑡 in 𝐿𝑡) do 

       Sort the tasks into categories such as memory-in-

tensive, CPU-intensive, or both. 

        Set every category in a different queue. 

         𝑉𝑙 = 𝑉𝑀𝑡𝑦𝑝𝑒𝑠() 
        for (each VM 𝑣 in 𝑉𝑙) do 

              Compute the same degree of 𝑣 and 𝑡 
             if (the required condition is met) then 

                  schedule 𝑡 to 𝑣 

                  else 

                      𝑉𝑛 = 𝐶𝑟𝑒𝑎𝑡𝑒𝑉𝑀() 
                       schedule 𝑡 to 𝑉𝑛 

                      modernise HSLs 

                end 

            end 

      end 

end 

 

The tasks are noted in the first phase, which 

means that suitable VMs for the tasks are located. The 

VM types are decided upon and the task types are cat-

egorised appropriately. Let 𝑇𝑙  be a type l task for a set 

of tasks 𝑇  that were taken from the historical data. 

Equation (32) can be used to calculate the ratio 𝑃. 

𝑃 = |
𝑇𝑙

𝑇
|              (32) 

Let 𝑇𝑖
𝑟 be a candidate task, and let 𝑉𝑗

𝑟 be a VM 

with 𝑟 =  {1,2,3,4} denoting the CPU, memory, band-

width, and storage capacity of the VM, respectively. 

And let  𝑟 =  {1,2,3,4 } be the task's requirements. 

Equation (33), when applied to task 𝑇𝑖
𝑟  and VM  𝑉𝑗

𝑟, 

yields the matching degree. 

𝑃(𝑇𝑖
𝑟|𝑉𝑗

𝑟) = {
(𝑉𝑗

𝑟 𝑇𝑖
𝑟⁄ )
2
,             𝑖𝑓  𝑇𝑖

𝑟 > 𝑉𝑗
𝑟

𝑉𝑚𝑎𝑥
𝑟 − 𝑉𝑗

𝑟 + 𝑇𝑖
𝑟 𝑉𝑚𝑎𝑥,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟⁄
,         

(33) 

where 𝑘  denotes the type of VM and 𝑉𝑚𝑎𝑥
𝑟 =

𝑘𝜖𝑈𝑚𝑎𝑥𝑉𝑘
𝑟 . Equation (34) can be used to determine 

the likelihood that a job 𝑇𝑗 is of type 𝑌𝑗. 

𝑃(𝑌𝑗|𝑇𝑖) = 𝜋𝑟=1
4  𝑃(𝑇𝑖

𝑟|𝑉𝑗
𝑟)          (34) 

The suggested algorithm optimises the schedul-

ing problem by utilising MTHHO. It is a difficult and 

complex task to map resources to tasks when there are 

several objectives. In this case, the dimension of the 

search field is calculated by the total amount of tasks 

in the process. The search space's size is adjusted to 

match the quantity of tasks. The dimensions' values 

range from 1 to the amount of VMs, depending on that 

number. The plotting of tasks to VMs in this research 

is represented by the symbols from earlier research 

i.e., 𝑥𝑡
𝑖  =  (𝑥𝑡

𝑖 1, 𝑥𝑡
𝑖 2, . . . , 𝑥𝑡

𝑖 𝑗
  ) ,  where 𝑥𝑡

𝑖 𝑗
 represents 

that, at time 𝑡, the 𝑗𝑡ℎ place of a particle is allocated to 

𝑉𝑀𝑖. The size of the search field is represented by the 

total amount of tasks within the process. The velocity 

is signified by 𝑣𝑡
𝑖   =  (𝑣𝑡

𝑖1, 𝑣𝑡
𝑖2, . . . , 𝑣𝑡

𝑖𝑗
),  where 

𝑣𝑡
𝑖𝑗
 𝑟 epresents the velocity, which represents that, at 

time 𝑡, 𝑉𝑀𝑖 transfers to the 𝑗𝑡ℎ place of a particle with 

velocity 𝑣. The method finds non-dominated solutions 

in subsequent iterations. The archive contains these so-

lutions. We refer to these alternatives as workable so-

lutions. Given that the processes identify non-domi-

nated results, solutions are kept initially, and the rec-

ord is empty. Only when the novel results outweigh the 

existing ones are they uploaded to the archive. Using 

the fitness function, the solutions' dominance is com-

puted. Lastly, the archive only includes what are 

known as non-dominated, or viable, solutions. 

4. Result And Discussion 

This sector included the outcomes, performance 

measures, and comparative analysis of the suggested 

technique. The py-sim tool was used to implement the 

suggested heuristic-based enhanced Multi-Tactic Har-

ris Hawks Optimization (MTHHO) algorithm on a 64-
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bit Windows 10 Pro computer equipped with an Intel 

CoreTM i7-55000U CPU running at 2.40 GHz and 8 

GB of RAM. The proposed method assumes that there 

will be 16 virtual machines (VMs) and 150 tasks in the 

cloud. The following factors led to the selection of the 

task and VM.  

• Efficiency of Resources: The optimised resource 

allocation made possible by the assumption of 150 

jobs and 16 resources (VMs) ensures that every task 

has enough processing power without wasting any of 

it. 

• Predictable Performance: A steady task and re-

source count makes it easier to forecast and maintain 

the system's performance, which leads to reliable and 

strong cloud computing services. 

•  Simplified Management: Using a preset set of 

tasks and resources simplifies system management 

and makes it easier to scale resources dynamically in 

response to shifting workloads. 

To determine which model receives a higher as-

sessment score, tests will be conducted on both the 

proposed model and each experimented model. Our 

suggested method has been compared to several opti-

misation and hybrid methods to evaluate its possibility. 

Several configurations of the models have been tried 

to achieve the utmost basic TWT, TFT, cost, energy 

efficiency, and resource utilisation. Numerous exami-

nations have been completed with the most comforting 

scheduling computations by this effort. To compare 

our model with other hybrid algorithms and outper-

form the communication scheduling issue in the cloud, 

this research has used enhanced optimisation. As a re-

sult, the suggested model has been improved. In this 

examination, a diversity of tasks and virtual machines 

were employed. When scheduling, every model 

demonstrates its capabilities.  

4.1 Metrics and Parameters 

The computational metrics listed beneath are uti-

lised in this study to validate the outcomes of the sug-

gested methodologies with other models.  

Total Waiting Time, or TWT: This is a criterion 

that the user wants. When multiple resources vie for a 

single resource, it is the wait time for job execution. 

This is the amount of time that is spent waiting for an 

errand or cycle to finish its queue. 

Total Finish Time, or TFT: This is a criterion that 

the user wants. It is the amount of time that passes ac-

cording to plan from the start of an assignment until its 

completion. This is the point at which a task reaches 

its completion of execution. 

Resource utilisation is a desired criterion as stated 

by the service provider. A further metric that shows the 

amplification of assets employed is resource utilisa-

tion. Although providers must use a certain number of 

resources to achieve maximum profit, resource utilisa-

tion should be high in the scheduling framework. One 

of the key implications in task scheduling is this pa-

rameter. There will be constant use of the resource. En-

ergy efficiency and throughput are also very important; 

nevertheless, resource utilisation is another important 

barrier to task execution. 

The amount of work that a process completes in 

a given amount of time is called throughput. In other 

words, throughput is the number of cycles over jobs 

finished in a given amount of period. The schedule 

ought to aim to increase the number of tasks completed 

in each time interval.  

Energy efficiency: The amount of power used to 

process each client's request is known as energy con-

sumption. A significant reduction in power consump-

tion is required to achieve energy efficiency. This is 

one of the most important things to think about while 

trying to create an improved environment. 

The suggested heuristic-based enhanced 

MTHHO method includes an initial evaluation of fit-

ness values within the first population as shown in Fig 

6. The best fitness values across 100 iterations are de-

termined by the method using a round-robin technique 

based on computing time. The suggested method ar-

rived at the lower fitness values of 33.338s, which de-

creased the makespan, by comparing the best fitness 

value with the previous fitness value in each iteration. 

 
Fig 6. The proposed method Output for Best Fit algorithm 

In this situation, the number of tasks (Nt) is kept 

constant at 500. Nonetheless, there is a 40-step varia-

tion in the number of virtual machines (Nv) between 
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40 and 200 VMs. The algorithms' relative perfor-

mances are compared in terms of Makespan in Fig 7. 

As the number of machines increases in Fig 7, it is pro-

jected that the Makespan will decrease. For all scenar-

ios from Nt= 40 to 200, the suggested approach 

outperforms all other algorithms. Additionally, it is ev-

ident that SJFP consistently has the highest MS values. 

The numerical results for Makespan are listed in Table 

8 correspondingly. 

Table 1. Makespan (MS) comparison of the proposed method ith the prior method 
Nt Algorithm 

 MCT SJFP LJFP MinMin MaxMin PSO 
SJFP- 

PSO 

LJFP-

PSO 

MCT-

PSO 

Pro-

posed 

40 25.9 29.0 27.6 27.5 25.1 20.4 20.6 22.0 25.9 19.8 

80 10.6 16.4 14.3 14.8 11.8 14.9 16.4 13.9 9.7 9.6 

120 5.5 10.8 8.5 7.8 6.1 9.3 10.5 8.5 4.9 4.5 

160 3.7 8.5 6.2 4.9 4.1 7.1 7.8 6.2 3.7 2.8 

200 2.7 5.6 4.5 3.7 3.2 7.2 5.6 4.5 2.7 2.4 

Fig 7. Performance evaluation among processes using 

makespan (MS). 

To contrast the proposed heuristic-based en-

hanced MTHHO method's QoS performance metrics 

with those of earlier techniques such as round robin 

(RR), PSO, first come first serve (FCFS), genetic sim-

ulated annealing (GASA), and shortest job first (SJF), 

HGA (Hybrid Genetic Algorithm). 

Table 2. Total outcomes across various approaches. 

Parameters SJF FCFS RR PSO GASA HGA Proposed 

Total execution time 55.36 54.68 54.31 40.21 36.22 32.57 16.75 

Total finish time 101.67 100.18 99.31 80.10 79.4 76.6 03.15 

Throughput 0.72 0 .73 0.74 1.01 0.99 1.21 2.4 

Resource utilization 0.42 0.42 0.4 0.61 0.63 0.69 0.95 

Energy efficiency 0.60 0.62 0.55 0.35 — 0.30 0.20 

Fig 8. shows the relationship between all em-

ployed strategies and the TFT and TET, which are 

some of the validation criteria used to verify the effi-

cacy of the suggested technique. These are carefully 

taken into account when making plans to increase QoS. 

The results show that we may attain the highest level 

of resource utilisation. Every activity in RR receives 

the same amount of time, but as the findings show, 

there are several situations in which an average wait-

ing time could be problematic. Similar data was used 

to assess the result and examine how the calculation 

was presented. Despite its speed advantage, the con-

ventional method has the longest waiting period next 

streamlining; the other AI models that were tested 
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were likewise effective, but not as effective as the sug-

gested model. Consequently, our suggested model out-

performs all other methods, which is our benchmark. 

Furthermore, in comparison to other strategies, the 

suggested method offers the shortest execution time, 

resulting in a faster task performance. So that users can 

avoid task terminations, the waiting time should be as 

short as possible. This can determine whether a task is 

reasonable and the best method to employ when ar-

ranging a cloud-based scheduling procedure. On the 

other hand, while some models have a longer comple-

tion time, our model outperforms others in terms of 

finishing period. 

  
Fig 8. TET, and TFT of the scheduling model. 

The suggested model with the highest throughput 

is the best technique, as demonstrated by the through-

put relationship between each approach and Fig 9. Fol-

lowing a sequence of numerous tasks, efforts were pre-

pared to increase the throughput. One of the most im-

portant factors in demonstrating the existence of a cy-

cle for every time unit will undoubtedly be throughput. 

The throughput result demonstrates the effectiveness 

of the suggested model. To represent the exhibition, 

each assignment was broken into ten parts. The sug-

gested method executes superior to further methods in 

this scenario during the split. Despite being linearly 

separable, the optimisation strategies demonstrated 

their effectiveness. In any case, the suggested model 

was the superior one. It may result that the suggested 

method outperforms previous methods and meets this 

depiction well because the duration is the largest num-

ber of tasks that can be finished per time unit as shown 

in Fig 10. 

 
Fig 9. Result of the throughput for different tasks. 

 
Fig 10. Comparison of the throughput 

Fig 11. displays how the scheduling strategies' re-

source utilisation relates to each other. Additionally, 

the suggested model selects a different request and 

makes use of the resources that are available during 

runtime. In comparison to alternative methods, the 

suggested computation reduces the inactive waiting 

time in this way. Similarly, asset utilisation is en-

hanced independently. However, some assets can be-

come excellent when they can be used in combination 

with others. The resource is examined under several 

different makespan totals. By increasing the amount of 

resources used, the approaches maintain their regular 

state. The typical waiting time often increases with re-

source size or the number of task increments. It fol-

lows that, in comparison to the other contrasting strat-

egies, the suggested model is the most effective. The 

effectiveness of different techniques in comparison to 

the suggested technique may be inferred from the Fig 

The normal asset utilised by diverse procedures is 

practically equivalent, indicating that the number of 

available resources has an impact on it. 
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Fig 11. Scheduling models vs resource utilization. 

 
Fig 12. Efficiency of energy consumption comparison with the 

proposed model. 

The efficiency of energy usage is shown in Fig 12. 

To fully examine its efficiency, the energy was first 

computed in KWh and then converted to a percentage. 

The parameter's goal is to lower energy consumption. 

The suggested approach beats further methods using a 

20% lower amount of energy consumption, as the Fig 

illustrates. The suggested model's efficiency was 

demonstrated by a comparison with alternative me-

taheuristics. In comparison, the PSO and GA appeared 

quite equitable; nonetheless, the model's efficiency in 

energy usage is still lacking. Being one of the im-

portant criteria, this one will improve machine perfor-

mance while also promoting environmental sustaina-

bility. The standard conventional procedure that has 

been tested is renowned for its sufficiency, however, it 

was unable to outperform the presented model. 

5. Conclusions 

In conclusion, the paper presents a comprehen-

sive approach aimed at optimizing VM allocation in 

cloud data centres, addressing challenges related to en-

ergy efficiency and task dependencies. By employing 

an enhanced MTHHO algorithm, this approach effec-

tively assigns energy-efficient VMs considering job 

dependencies and task execution times. The algorithm 

incorporates various improvements, including en-

hanced energy updating methods, elite opposition-

based learning for flexibility, Sobol sequences for pop-

ulation initialization, and the introduction of Gaussian 

walk learning to prevent the process from converging 

to local optima. The results demonstrate significant en-

hancements in Quality of Service (QoS) performances, 

showcasing reduced makespan, energy consumption 

of 0.20, throughput of 2.4, and execution time of 16.75, 

with resource allocation improvements ranging from 

1% to 98% compared to prior methods of cloud com-

puting. Overall, the proposed heuristic-based MTHHO 

method efficiently balances loads and allocates re-

sources, highlighting its potential for enhancing cloud 

computing efficiency and performance. 

Reference 

Abd Elaziz, M., Xiong, S., Jayasena, K. P. N., & Li, L. 

(2019). Task scheduling in cloud computing based 

on hybrid moth search algorithm and differential 

evolution. Knowledge-Based Systems, 169, 39-52. 

Abdullahi, M., & Ngadi, M. A. (2016). Symbiotic 

organism search optimization-based task 

scheduling in a cloud computing 

environment. Future Generation Computer 

Systems, 56, 640-650. 

Abdullahi, M., Ngadi, M. A., Dishing, S. I., & 

Abdulhamid, S. I. M. (2023). Adaptive symbiotic 

organisms search for constrained task scheduling 

in cloud computing. Journal of ambient 

intelligence and humanized computing, 14(7), 

8839-8850. 

Adhikari, M., Nandy, S., & Amgoth, T. (2019). Meta 

heuristic-based task deployment mechanism for 

load balancing in IaaS cloud. Journal of Network 

and Computer Applications, 128, 64-77. 

Agarwal, M., & Srivastava, G. M. S. (2021). 

Opposition-based learning inspired particle swarm 



DOI: 10.6977/IJoSI.202412_8(4).0005 

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024) 

83 

 

optimization (OPSO) scheme for task scheduling 

problems in cloud computing. Journal of Ambient 

Intelligence and Humanized Computing, 12(10), 

9855-9875. 

Alam, T. (2021). Cloud-based IoT applications and 

their roles in smart cities. Smart Cities, 4(3), 1196-

1219. 

Alsaidy, S. A., Abbood, A. D., & Sahib, M. A. (2022). 

Heuristic initialization of PSO task scheduling 

algorithm in cloud computing. Journal of King 

Saud University-Computer and Information 

Sciences, 34(6), 2370-2382. 

Chaudhary, D., & Kumar, B. (2018). Cloudy GSA for 

load scheduling in cloud computing. Applied Soft 

Computing, 71, 861-871. 

Cui, D., Peng, Z., Li, Q., He, J., Zheng, L., & Yuan, Y. 

(2021). A survey on cloud workflow collaborative 

adaptive scheduling. In Advances in Computer, 

Communication and Computational Sciences: 

Proceedings of IC4S 2019 (pp. 121-129). Springer 

Singapore. 

Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., 

Lydia, E. L., & Shankar, K. (2020). Hybridization 

of firefly and improved multi-objective particle 

swarm optimization algorithm for energy efficient 

load balancing in cloud computing 

environments. Journal of Parallel and Distributed 

Computing, 142, 36-45. 

Fanian, F., Bardsiri, V. K., & Shokouhifar, M. (2018). 

A new task scheduling algorithm using Firefly and 

simulated annealing algorithms in cloud 

computing. International Journal of Advanced 

Computer Science and Applications, 9(2).  

Gawali, M. B., & Shinde, S. K. (2018). Task 

scheduling and resource allocation in cloud 

computing using a heuristic approach. Journal of 

Cloud Computing, 7(1), 1-16. 

Golchi, M. M., Saraeian, S., & Heydari, M. (2019). A 

hybrid of firefly and improved particle swarm 

optimization algorithms for load balancing in 

cloud environments: Performance 

evaluation. Computer Networks, 162, 106860. 

Jena, U. K., Das, P. K., & Kabat, M. R. (2022). 

Hybridization of a meta-heuristic algorithm for 

load balancing in a cloud computing 

environment. Journal of King Saud University-

Computer and Information Sciences, 34(6), 2332-

2342. 

Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy 

efficiency in cloud computing data centres: a 

survey on software technologies. Cluster 

Computing, 26(3), 1845-1875. 

Keshanchi, B., Souri, A., & Navimipour, N. J. (2017). 

An improved genetic algorithm for task scheduling 

in the cloud environments using the priority queues: 

formal verification, simulation, and statistical 

testing. Journal of Systems and Software, 124, 1-

21. 

Konjaang, J. K., & Xu, L. (2021). Meta-heuristic 

approaches for effective scheduling in 

infrastructure as a service cloud: A systematic 

review. Journal of Network and Systems 

Management, 29, 1-57. 

Kumar, M., & Sharma, S. C. (2018). PSO-COGENT: 

Cost and energy-efficient scheduling in a cloud 

environment with deadline 

constraints. Sustainable Computing: Informatics 

and Systems, 19, 147-164. 

Mahato, D. P., Singh, R. S., Tripathi, A. K., & Maurya, 

A. K. (2017). On scheduling transactions in a grid 

processing system considering load through ant 

colony optimization. Applied Soft Computing, 61, 

875-891. 

Mansouri, N., Zade, B. M. H., & Javidi, M. M. (2019). 

Hybrid task scheduling strategy for cloud 

computing by modified particle swarm 

optimization and fuzzy theory. Computers & 

Industrial Engineering, 130, 597-633. 

Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load 

balancing in cloud computing: a big 

picture. Journal of King Saud University-

Computer and Information Sciences, 32(2), 149-

158. 

Ramamoorthy, S., Ravikumar, G., Saravana Balaji, B., 

Balakrishnan, S., & Venkatachalam, K. (2021). 

MCAMO: multi-constraint aware multi-objective 



DOI: 10.6977/IJoSI.202412_8(4).0005 

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024) 

84 

 

resource scheduling optimization technique for 

cloud infrastructure services. Journal of Ambient 

Intelligence and Humanized Computing, 12, 5909-

5916. 

Strumberger, I., Bacanin, N., Tuba, M., & Tuba, E. 

(2019). Resource scheduling in cloud computing 

based on a hybridized whale optimization 

algorithm. Applied Sciences, 9(22), 4893. 

Wei, X. (2020). Task scheduling optimization strategy 

using improved ant colony optimization algorithm 

in cloud computing. Journal of Ambient 

Intelligence and Humanized Computing, 1-12. 

Yadav, M., & Mishra, A. (2023). An enhanced ordinal 

optimization with lower scheduling overhead 

based novel approach for task scheduling in a 

cloud computing environment. Journal of Cloud 

Computing, 12(1), 8.


